(a) Perform partial pivoting on the coefficient matrix
\[\begin{split} \begin{align*}
& \left(\begin{matrix}2 & 3 & -1\\4 & 9 & -1\\0 & 3 & 2\end{matrix}\right)
\begin{matrix} R_{1} \leftrightarrow R_{2}\\ \phantom{x} \\ \phantom{x} \end{matrix}
&& \longrightarrow
\left(\begin{matrix}4 & 9 & -1\\2 & 3 & -1\\0 & 3 & 2\end{matrix}\right)
= PA.
\end{align*} \end{split}\]
Applying the same row operations to the identity matrix:
\[\begin{split} \begin{align*}
& \left(\begin{matrix}1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1\end{matrix}\right)
\begin{matrix} R_{1} \leftrightarrow R_{2}\\ \phantom{x} \\ \phantom{x} \end{matrix}
&& \longrightarrow
\left(\begin{matrix}0 & 1 & 0\\1 & 0 & 0\\0 & 0 & 1\end{matrix}\right)
= P.
\end{align*} \end{split}\]
Calculate the LU decomposition of \(PA = \left(\begin{matrix}4 & 9 & -1\\2 & 3 & -1\\0 & 3 & 2\end{matrix}\right)\):
\[\begin{split} \begin{align*}
j &= 1: & u_{11} &= a_{11} = 4 , \\
&& \ell_{21} &= \frac{1}{u_{11}} \left( a_{21} \right) = \frac{1}{4} \left( 2 \right) = \frac{1}{2}, \\
&& \ell_{31} &= \frac{1}{u_{11}} \left( a_{31} \right) = \frac{1}{4} \left( 0 \right) = 0, \\
j &= 2: & u_{12} &= a_{12} = 9 , \\
&& u_{22} &= a_{22} - \ell_{21} u_{12} = 3 - \frac{1}{2} \left( 9 \right) = - \frac{3}{2}, \\
&& \ell_{32} &= \frac{1}{u_{22}} \left( a_{32} - \ell_{31} u_{12} \right) = \frac{1}{-3/2} \left( 3 - 0 \left( 9 \right) \right) = -2, \\
j &= 3: & u_{13} &= a_{13} = -1 , \\
&& u_{23} &= a_{23} - \ell_{21} u_{13} = -1 - \frac{1}{2} \left( -1 \right) = 0, \\
&& u_{33} &= a_{33} - \ell_{31} u_{13} - \ell_{32} u_{23} = 2 - 0 \left( -1 \right) - \left(-2 \right) \left( - \frac{1}{2} \right) = 1, \\
\end{align*} \end{split}\]
So \(L = \left(\begin{matrix}1 & 0 & 0\\\frac{1}{2} & 1 & 0\\0 & -2 & 1\end{matrix}\right)\) and \(U = \left(\begin{matrix}4 & 9 & -1\\0 & - \frac{3}{2} & - \frac{1}{2}\\0 & 0 & 1\end{matrix}\right)\).
Solving \(L \vec{y} = P \vec{b}\) using forward substitution
\[\begin{split} \begin{align*}
\left(\begin{matrix}1 & 0 & 0\\\frac{1}{2} & 1 & 0\\0 & -2 & 1\end{matrix}\right) \begin{pmatrix} y_{1} \\ y_{2} \\ y_{3} \end{pmatrix} &=\left(\begin{matrix}18\\4\\11\end{matrix}\right) \\
y_{1} &= 18 \\
y_{2} &= 4 - \frac{1}{2} \left( 18 \right) = -5 , \\
y_{3} &= 11 - 0 \left( 18 \right) + 2 \left( -5 \right) = 1 .
\end{align*} \end{split}\]
Solving \(U \vec{x} = \vec{y}\) using back substitution
\[\begin{split} \begin{align*}
\left(\begin{matrix}4 & 9 & -1\\0 & - \frac{3}{2} & - \frac{1}{2}\\0 & 0 & 1\end{matrix}\right) \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} &=\left(\begin{matrix}18\\-5\\1\end{matrix}\right) \\
x_{3} &= \frac{1}{1} \left( 1 \right) = 1 , \\
x_{2} &= \frac{1}{- \frac{3}{2}} \left( -5 + \frac{1}{2} \left( 1 \right) \right) = 3 , \\
x_{1} &= \frac{1}{4} \left( 18 - 9 \left( 3 \right) + 1 \left( 1 \right) \right) = -2 .
\end{align*} \end{split}\]
(b) Perform partial pivoting on the coefficient matrix
\[\begin{split} \begin{align*}
& \left(\begin{matrix}3 & 9 & 5\\1 & 2 & 2\\2 & 4 & 5\end{matrix}\right)
\begin{matrix} \phantom{x} \\ R_{2} \leftrightarrow R_{3}\\ \phantom{x} \end{matrix}
&& \longrightarrow
\left(\begin{matrix}3 & 9 & 5\\2 & 4 & 5\\1 & 2 & 2\end{matrix}\right)
= PA.
\end{align*} \end{split}\]
Applying the same row operations to the identity matrix:
\[\begin{split} \begin{align*}
& \left(\begin{matrix}1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1\end{matrix}\right)
\begin{matrix} \phantom{x} \\ R_{2} \leftrightarrow R_{3}\\ \phantom{x} \end{matrix}
&& \longrightarrow
\left(\begin{matrix}1 & 0 & 0\\0 & 0 & 1\\0 & 1 & 0\end{matrix}\right)
= P.
\end{align*} \end{split}\]
Calculate the LU decomposition of \(PA = \left(\begin{matrix}3 & 9 & 5\\2 & 4 & 5\\1 & 2 & 2\end{matrix}\right)\):
\[\begin{split} \begin{align*}
j &= 1: & u_{11} &= a_{11} = 3 , \\
&& \ell_{21} &= \frac{1}{u_{11}} \left( a_{21} \right) = \frac{1}{3} \left( 2 \right) = \frac{2}{3}, \\
&& \ell_{31} &= \frac{1}{u_{11}} \left( a_{31} \right) = \frac{1}{3} \left( 1 \right) = \frac{1}{3}, \\
j &= 2: & u_{12} &= a_{12} = 9 , \\
&& u_{22} &= a_{22} - \ell_{21} u_{12} = 4 - \frac{2}{3} \left( 9 \right) = -2, \\
&& \ell_{32} &= \frac{1}{u_{22}} \left( a_{32} - \ell_{31} u_{12} \right) = \frac{1}{-2} \left( 2 - \frac{1}{3} \left( 9 \right) \right) = \frac{1}{2}, \\
j &= 3: & u_{13} &= a_{13} = 5 , \\
&& u_{23} &= a_{23} - \ell_{21} u_{13} = 5 - \frac{2}{3} \left( 5 \right) = 0, \\
&& u_{33} &= a_{33} - \ell_{31} u_{13} - \ell_{32} u_{23} = 2 - \frac{1}{3} \left( 5 \right) - \frac{1}{2} \left( \frac{5}{3} \right) = - \frac{1}{2}, \\
\end{align*} \end{split}\]
So \(L = \left(\begin{matrix}1 & 0 & 0\\\frac{2}{3} & 1 & 0\\\frac{1}{3} & \frac{1}{2} & 1\end{matrix}\right)\) and \(U = \left(\begin{matrix}3 & 9 & 5\\0 & -2 & \frac{5}{3}\\0 & 0 & - \frac{1}{2}\end{matrix}\right)\).
Solving \(L \vec{y} = P \vec{b}\) using forward substitution
\[\begin{split} \begin{align*}
\left(\begin{matrix}1 & 0 & 0\\\frac{2}{3} & 1 & 0\\\frac{1}{3} & \frac{1}{2} & 1\end{matrix}\right) \begin{pmatrix} y_{1} \\ y_{2} \\ y_{3} \end{pmatrix} &=\left(\begin{matrix}20\\4\\3\end{matrix}\right) \\
y_{1} &= 20 \\
y_{2} &= 4 - \frac{2}{3} \left( 20 \right) = - \frac{28}{3} , \\
y_{3} &= 3 - \frac{1}{3} \left( 20 \right) - \frac{1}{2} \left( - \frac{28}{3} \right) = 1 .
\end{align*} \end{split}\]
Solving \(U \vec{x} = \vec{y}\) using back substitution
\[\begin{split} \begin{align*}
\left(\begin{matrix}3 & 9 & 5\\0 & -2 & \frac{5}{3}\\0 & 0 & - \frac{1}{2}\end{matrix}\right) \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} &=\left(\begin{matrix}20\\- \frac{28}{3}\\1\end{matrix}\right) \\
x_{3} &= \frac{1}{- \frac{1}{2}} \left( 1 \right) = -2 , \\
x_{2} &= \frac{1}{-2} \left( - \frac{28}{3} - \frac{5}{3} \left( -2 \right) \right) = 3 , \\
x_{1} &= \frac{1}{3} \left( 20 - 9 \left( 3 \right) - 5 \left( -2 \right) \right) = 1 .
\end{align*} \end{split}\]
(c) Perform partial pivoting on the coefficient matrix
\[\begin{split} \begin{align*}
& \left(\begin{matrix}1 & 0 & 3 & 2\\3 & -2 & 5 & 1\\4 & -1 & -2 & -3\\0 & 2 & 0 & 3\end{matrix}\right)
\begin{matrix} R_{1} \leftrightarrow R_{3}\\ \phantom{x} \\ \phantom{x} \\ \phantom{x} \end{matrix}
&& \longrightarrow
\left(\begin{matrix}4 & -1 & -2 & -3\\3 & -2 & 5 & 1\\1 & 0 & 3 & 2\\0 & 2 & 0 & 3\end{matrix}\right)
\begin{matrix} \phantom{x} \\ R_{2} \leftrightarrow R_{4}\\ \phantom{x} \\ \phantom{x} \end{matrix}
\\ \longrightarrow
& \left(\begin{matrix}4 & -1 & -2 & -3\\0 & 2 & 0 & 3\\1 & 0 & 3 & 2\\3 & -2 & 5 & 1\end{matrix}\right)
\begin{matrix} \phantom{x} \\ \phantom{x} \\ R_{3} \leftrightarrow R_{4}\\ \phantom{x} \end{matrix}
&& \longrightarrow
\left(\begin{matrix}4 & -1 & -2 & -3\\0 & 2 & 0 & 3\\3 & -2 & 5 & 1\\1 & 0 & 3 & 2\end{matrix}\right)
= PA.
\end{align*} \end{split}\]
Applying the same row operations to the identity matrix:
\[\begin{split} \begin{align*}
& \left(\begin{matrix}1 & 0 & 0 & 0\\0 & 1 & 0 & 0\\0 & 0 & 1 & 0\\0 & 0 & 0 & 1\end{matrix}\right)
\begin{matrix} R_{1} \leftrightarrow R_{3}\\ \phantom{x} \\ \phantom{x} \\ \phantom{x} \end{matrix}
&& \longrightarrow
\left(\begin{matrix}0 & 0 & 1 & 0\\0 & 1 & 0 & 0\\1 & 0 & 0 & 0\\0 & 0 & 0 & 1\end{matrix}\right)
\begin{matrix} \phantom{x} \\ R_{2} \leftrightarrow R_{4}\\ \phantom{x} \\ \phantom{x} \end{matrix}
\\ \longrightarrow
& \left(\begin{matrix}0 & 0 & 1 & 0\\0 & 0 & 0 & 1\\1 & 0 & 0 & 0\\0 & 1 & 0 & 0\end{matrix}\right)
\begin{matrix} \phantom{x} \\ \phantom{x} \\ R_{3} \leftrightarrow R_{4}\\ \phantom{x} \end{matrix}
&& \longrightarrow
\left(\begin{matrix}0 & 0 & 1 & 0\\0 & 0 & 0 & 1\\0 & 1 & 0 & 0\\1 & 0 & 0 & 0\end{matrix}\right)
= P.
\end{align*} \end{split}\]
Calculate the LU decomposition of \(PA = \left(\begin{matrix}4 & -1 & -2 & -3\\0 & 2 & 0 & 3\\3 & -2 & 5 & 1\\1 & 0 & 3 & 2\end{matrix}\right)\):
\[\begin{split} \begin{align*}
j &= 1: & u_{11} &= a_{11} = 4 , \\
&& \ell_{21} &= \frac{1}{u_{11}} \left( a_{21} \right) = \frac{1}{4} \left( 0 \right) = 0, \\
&& \ell_{31} &= \frac{1}{u_{11}} \left( a_{31} \right) = \frac{1}{4} \left( 3 \right) = \frac{3}{4}, \\
&& \ell_{41} &= \frac{1}{u_{11}} \left( a_{41} \right) = \frac{1}{4} \left( 1 \right) = \frac{1}{4}, \\
j &= 2: & u_{12} &= a_{12} = -1 , \\
&& u_{22} &= a_{22} - \ell_{21} u_{12} = 2 - 0 \left( -1 \right) = 2, \\
&& \ell_{32} &= \frac{1}{u_{22}} \left( a_{32} - \ell_{31} u_{12} \right) = \frac{1}{2} \left( -2 - \frac{3}{4} \left( -1 \right) \right) = - \frac{5}{8}, \\
&& \ell_{42} &= \frac{1}{u_{22}} \left( a_{42} - \ell_{41} u_{12} \right) = \frac{1}{2} \left( 0 - \frac{1}{4} \left( -1 \right) \right) = \frac{1}{8}, \\
j &= 3: & u_{13} &= a_{13} = -2 , \\
&& u_{23} &= a_{23} - \ell_{21} u_{13} = 0 - 0 \left( -2 \right) = 0, \\
&& u_{33} &= a_{33} - \ell_{31} u_{13} - \ell_{32} u_{23} = 5 - \frac{3}{4} \left( -2 \right) - \left(- \frac{5}{8} \right) \left( 0 \right) = \frac{13}{2}, \\
&& \ell_{43} &= \frac{1}{u_{33}} \left( a_{43} - \ell_{41} u_{13} - \ell_{42} u_{23} \right) = \frac{1}{13/2} \left( 3 - \frac{1}{4} \left( -2 \right) - \frac{1}{8} \left( 0 \right) \right) = \frac{7}{13}, \\
j &= 4: & u_{14} &= a_{14} = -3 , \\
&& u_{24} &= a_{24} - \ell_{21} u_{14} = 3 - 0 \left( -3 \right) = 0, \\
&& u_{34} &= a_{34} - \ell_{31} u_{14} - \ell_{32} u_{24} = 1 - \frac{3}{4} \left( -3 \right) - \left(- \frac{5}{8} \right) \left( 3 \right) = 0, \\
&& u_{44} &= a_{44} - \ell_{41} u_{14} - \ell_{42} u_{24} - \ell_{43} u_{34} = 2 - \frac{1}{4} \left( -3 \right) - \frac{1}{8} \left( 3 \right) - \frac{7}{13} \left( \frac{41}{8} \right) = - \frac{5}{13}, \\
\end{align*} \end{split}\]
So \(L = \left(\begin{matrix}1 & 0 & 0 & 0\\0 & 1 & 0 & 0\\\frac{3}{4} & - \frac{5}{8} & 1 & 0\\\frac{1}{4} & \frac{1}{8} & \frac{7}{13} & 1\end{matrix}\right)\) and \(U = \left(\begin{matrix}4 & -1 & -2 & -3\\0 & 2 & 0 & 3\\0 & 0 & \frac{13}{2} & \frac{41}{8}\\0 & 0 & 0 & - \frac{5}{13}\end{matrix}\right)\).
Solving \(L \vec{y} = P \vec{b}\) using forward substitution
\[\begin{split} \begin{align*}
\left(\begin{matrix}1 & 0 & 0 & 0\\0 & 1 & 0 & 0\\\frac{3}{4} & - \frac{5}{8} & 1 & 0\\\frac{1}{4} & \frac{1}{8} & \frac{7}{13} & 1\end{matrix}\right) \begin{pmatrix} y_{1} \\ y_{2} \\ y_{3} \\ y_{4} \end{pmatrix} &=\left(\begin{matrix}-12\\13\\28\\21\end{matrix}\right) \\
y_{1} &= -12 \\
y_{2} &= 13 - 0 \left( -12 \right) = 13 , \\
y_{3} &= 28 - \frac{3}{4} \left( -12 \right) + \frac{5}{8} \left( 13 \right) = \frac{361}{8} , \\
y_{4} &= 21 - \frac{1}{4} \left( -12 \right) - \frac{1}{8} \left( 13 \right) - \frac{7}{13} \left( \frac{361}{8} \right) = - \frac{25}{13} .
\end{align*} \end{split}\]
Solving \(U \vec{x} = \vec{y}\) using back substitution
\[\begin{split} \begin{align*}
\left(\begin{matrix}4 & -1 & -2 & -3\\0 & 2 & 0 & 3\\0 & 0 & \frac{13}{2} & \frac{41}{8}\\0 & 0 & 0 & - \frac{5}{13}\end{matrix}\right) \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{pmatrix} &=\left(\begin{matrix}-12\\13\\\frac{361}{8}\\- \frac{25}{13}\end{matrix}\right) \\
x_{4} &= \frac{1}{- \frac{5}{13}} \left( - \frac{25}{13} \right) = 5 , \\
x_{3} &= \frac{1}{\frac{13}{2}} \left( \frac{361}{8} - \frac{41}{8} \left( 5 \right) \right) = 3 , \\
x_{2} &= \frac{1}{2} \left( 13 - 0 \left( 3 \right) - 3 \left( 5 \right) \right) = -1 , \\
x_{1} &= \frac{1}{4} \left( -12 + 1 \left( -1 \right) + 2 \left( 3 \right) + 3 \left( 5 \right) \right) = 2 .
\end{align*} \end{split}\]
(d) Perform partial pivoting on the coefficient matrix
\[\begin{split} \begin{align*}
& \left(\begin{matrix}1 & 5 & 2 & 2\\-2 & -4 & 2 & 0\\3 & 1 & -2 & -1\\-3 & -3 & 4 & -1\end{matrix}\right)
\begin{matrix} R_{1} \leftrightarrow R_{3}\\ \phantom{x} \\ \phantom{x} \\ \phantom{x} \end{matrix}
&& \longrightarrow
\left(\begin{matrix}3 & 1 & -2 & -1\\-2 & -4 & 2 & 0\\1 & 5 & 2 & 2\\-3 & -3 & 4 & -1\end{matrix}\right)
\begin{matrix} \phantom{x} \\ R_{2} \leftrightarrow R_{3}\\ \phantom{x} \\ \phantom{x} \end{matrix}
\\ \longrightarrow
& \left(\begin{matrix}3 & 1 & -2 & -1\\1 & 5 & 2 & 2\\-2 & -4 & 2 & 0\\-3 & -3 & 4 & -1\end{matrix}\right)
\begin{matrix} \phantom{x} \\ \phantom{x} \\ R_{3} \leftrightarrow R_{4}\\ \phantom{x} \end{matrix}
&& \longrightarrow
\left(\begin{matrix}3 & 1 & -2 & -1\\1 & 5 & 2 & 2\\-3 & -3 & 4 & -1\\-2 & -4 & 2 & 0\end{matrix}\right)
= PA.
\end{align*} \end{split}\]
Applying the same row operations to the identity matrix:
\[\begin{split} \begin{align*}
& \left(\begin{matrix}1 & 0 & 0 & 0\\0 & 1 & 0 & 0\\0 & 0 & 1 & 0\\0 & 0 & 0 & 1\end{matrix}\right)
\begin{matrix} R_{1} \leftrightarrow R_{3}\\ \phantom{x} \\ \phantom{x} \\ \phantom{x} \end{matrix}
&& \longrightarrow
\left(\begin{matrix}0 & 0 & 1 & 0\\0 & 1 & 0 & 0\\1 & 0 & 0 & 0\\0 & 0 & 0 & 1\end{matrix}\right)
\begin{matrix} \phantom{x} \\ R_{2} \leftrightarrow R_{3}\\ \phantom{x} \\ \phantom{x} \end{matrix}
\\ \longrightarrow
& \left(\begin{matrix}0 & 0 & 1 & 0\\1 & 0 & 0 & 0\\0 & 1 & 0 & 0\\0 & 0 & 0 & 1\end{matrix}\right)
\begin{matrix} \phantom{x} \\ \phantom{x} \\ R_{3} \leftrightarrow R_{4}\\ \phantom{x} \end{matrix}
&& \longrightarrow
\left(\begin{matrix}0 & 0 & 1 & 0\\1 & 0 & 0 & 0\\0 & 0 & 0 & 1\\0 & 1 & 0 & 0\end{matrix}\right)
= P.
\end{align*} \end{split}\]
Calculate the LU decomposition of \(PA = \left(\begin{matrix}3 & 1 & -2 & -1\\1 & 5 & 2 & 2\\-3 & -3 & 4 & -1\\-2 & -4 & 2 & 0\end{matrix}\right)\):
\[\begin{split} \begin{align*}
j &= 1: & u_{11} &= a_{11} = 3 , \\
&& \ell_{21} &= \frac{1}{u_{11}} \left( a_{21} \right) = \frac{1}{3} \left( 1 \right) = \frac{1}{3}, \\
&& \ell_{31} &= \frac{1}{u_{11}} \left( a_{31} \right) = \frac{1}{3} \left( -3 \right) = -1, \\
&& \ell_{41} &= \frac{1}{u_{11}} \left( a_{41} \right) = \frac{1}{3} \left( -2 \right) = - \frac{2}{3}, \\
j &= 2: & u_{12} &= a_{12} = 1 , \\
&& u_{22} &= a_{22} - \ell_{21} u_{12} = 5 - \frac{1}{3} \left( 1 \right) = \frac{14}{3}, \\
&& \ell_{32} &= \frac{1}{u_{22}} \left( a_{32} - \ell_{31} u_{12} \right) = \frac{1}{14/3} \left( -3 - \left( -1 \right) \left( 1 \right) \right) = - \frac{3}{7}, \\
&& \ell_{42} &= \frac{1}{u_{22}} \left( a_{42} - \ell_{41} u_{12} \right) = \frac{1}{14/3} \left( -4 - \left( - \frac{2}{3} \right) \left( 1 \right) \right) = - \frac{5}{7}, \\
j &= 3: & u_{13} &= a_{13} = -2 , \\
&& u_{23} &= a_{23} - \ell_{21} u_{13} = 2 - \frac{1}{3} \left( -2 \right) = 0, \\
&& u_{33} &= a_{33} - \ell_{31} u_{13} - \ell_{32} u_{23} = 4 - \left(-1 \right) \left( -2 \right) - \left(- \frac{3}{7} \right) \left( \frac{8}{3} \right) = \frac{22}{7}, \\
&& \ell_{43} &= \frac{1}{u_{33}} \left( a_{43} - \ell_{41} u_{13} - \ell_{42} u_{23} \right) = \frac{1}{22/7} \left( 2 - \left( - \frac{2}{3} \right) \left( -2 \right) - \left( - \frac{5}{7} \right) \left( \frac{8}{3} \right) \right) = \frac{9}{11}, \\
j &= 4: & u_{14} &= a_{14} = -1 , \\
&& u_{24} &= a_{24} - \ell_{21} u_{14} = 2 - \frac{1}{3} \left( -1 \right) = 0, \\
&& u_{34} &= a_{34} - \ell_{31} u_{14} - \ell_{32} u_{24} = -1 - \left(-1 \right) \left( -1 \right) - \left(- \frac{3}{7} \right) \left( \frac{7}{3} \right) = 0, \\
&& u_{44} &= a_{44} - \ell_{41} u_{14} - \ell_{42} u_{24} - \ell_{43} u_{34} = 0 - \left(- \frac{2}{3} \right) \left( -1 \right) - \left(- \frac{5}{7} \right) \left( \frac{7}{3} \right) - \frac{9}{11} \left( -1 \right) = \frac{20}{11}, \\
\end{align*} \end{split}\]
So \(L = \left(\begin{matrix}1 & 0 & 0 & 0\\\frac{1}{3} & 1 & 0 & 0\\-1 & - \frac{3}{7} & 1 & 0\\- \frac{2}{3} & - \frac{5}{7} & \frac{9}{11} & 1\end{matrix}\right)\) and \(U = \left(\begin{matrix}3 & 1 & -2 & -1\\0 & \frac{14}{3} & \frac{8}{3} & \frac{7}{3}\\0 & 0 & \frac{22}{7} & -1\\0 & 0 & 0 & \frac{20}{11}\end{matrix}\right)\).
Solving \(L \vec{y} = P \vec{b}\) using forward substitution
\[\begin{split} \begin{align*}
\left(\begin{matrix}1 & 0 & 0 & 0\\\frac{1}{3} & 1 & 0 & 0\\-1 & - \frac{3}{7} & 1 & 0\\- \frac{2}{3} & - \frac{5}{7} & \frac{9}{11} & 1\end{matrix}\right) \begin{pmatrix} y_{1} \\ y_{2} \\ y_{3} \\ y_{4} \end{pmatrix} &=\left(\begin{matrix}-2\\-10\\4\\10\end{matrix}\right) \\
y_{1} &= -2 \\
y_{2} &= -10 - \frac{1}{3} \left( -2 \right) = - \frac{28}{3} , \\
y_{3} &= 4 + 1 \left( -2 \right) + \frac{3}{7} \left( - \frac{28}{3} \right) = -2 , \\
y_{4} &= 10 + \frac{2}{3} \left( -2 \right) + \frac{5}{7} \left( - \frac{28}{3} \right) - \frac{9}{11} \left( -2 \right) = \frac{40}{11} .
\end{align*} \end{split}\]
Solving \(U \vec{x} = \vec{y}\) using back substitution
\[\begin{split} \begin{align*}
\left(\begin{matrix}3 & 1 & -2 & -1\\0 & \frac{14}{3} & \frac{8}{3} & \frac{7}{3}\\0 & 0 & \frac{22}{7} & -1\\0 & 0 & 0 & \frac{20}{11}\end{matrix}\right) \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{pmatrix} &=\left(\begin{matrix}-2\\- \frac{28}{3}\\-2\\\frac{40}{11}\end{matrix}\right) \\
x_{4} &= \frac{1}{\frac{20}{11}} \left( \frac{40}{11} \right) = 2 , \\
x_{3} &= \frac{1}{\frac{22}{7}} \left( -2 + 1 \left( 2 \right) \right) = 0 , \\
x_{2} &= \frac{1}{\frac{14}{3}} \left( - \frac{28}{3} - \frac{8}{3} \left( 0 \right) - \frac{7}{3} \left( 2 \right) \right) = -3 , \\
x_{1} &= \frac{1}{3} \left( -2 - 1 \left( -3 \right) + 2 \left( 0 \right) + 1 \left( 2 \right) \right) = 1 .
\end{align*} \end{split}\]