First check the highest value of \(k\) that satisfies \(B(k)\)
\[\begin{split} \begin{align*}
k &= 1: & B(1) &= b_1 + b_2 + b_3 = \frac{1}{6} + \frac{2}{3} + \frac{1}{6} = 0, \\
k &= 2: & B(2) &= b_1c_1 + b_2c_2 + b_3c_3 = \frac{1}{6}(0) + \frac{2}{3}\left( \frac{1}{2} \right) + \frac{1}{6} (1) = \frac{1}{2}, \\
k &= 3: & B(3) &= b_1c_1^2 + b_2c_2^2 + b_3c_3^2 = \frac{1}{6}(0)^2 + \frac{2}{3} \left(\frac{1}{2}\right)^2 + \frac{1}{6}(1)^2 = \frac{1}{3}, \\
k &= 4: & B(4) &= b_1c_1^3 + b_2c_2^3 + b_3c_3^3 = \frac{1}{6}(0)^3 + \frac{2}{3} \left(\frac{1}{2}\right)^3 + \frac{1}{6}(1)^3 = \frac{1}{4}, \\
k &= 5: & B(5) &= b_1c_1^4 + b_2c_2^4 + b_3c_3^4 = \frac{1}{6}(0)^4 + \frac{2}{3} \left(\frac{1}{2}\right)^4 + \frac{1}{6}(1)^4 = \frac{5}{24}.
\end{align*} \end{split}\]
So the highest value of \(k\) for which \(B(k)\) is satisfied is \(k=4\). We now need to check whether \(C(2)\) and \(D(2)\) are satisfied.
\[\begin{split} \begin{align*}
\ell &= 1, & i &= 1: & LHS &= a_{11} + a_{12} + a_{13} = 0 + 0 + 0 = 0, \\
&&&& RHS &= \frac{1}{1}c_1^1 = 0, \\
\ell &= 1, & i &= 2: & LHS &= a_{21} + a_{22} + a_{23} = \frac{1}{4} + \frac{1}{4} + 0 = \frac{1}{2}, \\
&&&& RHS &= \frac{1}{1}c_2^1 = \frac{1}{2}, \\
\ell &= 1, & i &= 3: & LHS &= a_{31} + a_{32} + a_{33} = 0 + 1 + 0 = 1, \\
&&&& RHS &= \frac{1}{1}c_3^1 = 1, \\
\ell &= 2, & i &= 1: & LHS &= a_{11}c_1 + a_{12}c_2 + a_{13}c_3 = 0(0) + 0\left(\frac{1}{2}\right) + 0(1) = 0, \\
&&&& RHS &= \frac{1}{2}c_1^2 = 0, \\
\ell &= 2, & i &= 2: & LHS &= a_{21}c_1 + a_{22}c_2 + a_{23}c_3 = \frac{1}{4}(0) + \frac{1}{4}\left(\frac{1}{2}\right) + 0(1) = \frac{1}{8}, \\
&&&& RHS &= \frac{1}{2}c_2^2 = \frac{1}{2}\left(\frac{1}{2}\right)^2 = \frac{1}{8}, \\
\ell &= 2, & i &= 3: & LHS &= a_{31}c_1 + a_{32}c_2 + a_{33}c_3 = 0(0) + 1\left(\frac{1}{2}\right) + 0(1) = \frac{1}{2}, \\
&&&& RHS &= \frac{1}{2}c_3^3 = \frac{1}{2}(1)^3 = \frac{1}{2}.
\end{align*} \end{split}\]
So the \(C(2)\) condition is satisfied. Checking the \(D(2)\) condition
\[\begin{split} \begin{align*}
\ell &= 1, & j &= 1: & LHS &= b_1a_{11} + b_2a_{21} + b_3a_{31} = \frac{1}{6}(0) + \frac{2}{3}\left(\frac{1}{4}\right) + \frac{1}{6}(0) = \frac{1}{6}, \\
&&&& RHS &= \frac{1}{1}b_1(1 - c_1^1) = \frac{1}{6}(1 - 0) = \frac{1}{6}, \\
\ell &= 1, & j &= 2: & LHS &= b_1a_{12} + b_2a_{22} + b_3a_{32} = \frac{1}{6}(0) + \frac{2}{3}\left( \frac{1}{4} \right) + \frac{1}{6}(1) = \frac{1}{3}, \\
&&&& RHS &= \frac{1}{1}b_2(1 - c_2^1) = \frac{2}{3}\left(1 - \frac{1}{2}\right) = \frac{1}{3}, \\
\ell &= 1, & j &= 3: & LHS &= b_1a_{13} + b_2a_{23} + b_3a_{33} = \frac{1}{6}(0) + \frac{2}{3}\left(\frac{1}{4}\right) + \frac{1}{6}(0) = \frac{1}{6}, \\
&&&& RHS &= \frac{1}{1}b_3(1 - c_3^1) = \frac{1}{6}(1 - 0) = \frac{1}{6}, \\
\ell &= 2, & j &= 1: & LHS &= b_1c_1a_{11} + b_2c_2a_{21} + b_3c_3a_{31} = \frac{1}{6}(0)(0) + \frac{2}{3}\left(\frac{1}{2}\right)\left(\frac{1}{4}\right) + \frac{1}{6}(1)(0) = \frac{1}{12}, \\
&&&& RHS &= \frac{1}{2}b_1(1 - c_1^2) = \frac{1}{2}\left(\frac{1}{6}\right)(1 - 0) = \frac{1}{12}, \\
\ell &= 2, & j &= 2: & LHS &= b_1c_1a_{12} + b_2c_2a_{22} + b_3c_3a_{23} = \frac{1}{6}(0)(0) + \frac{2}{3}\left(\frac{1}{2}\right)\left(\frac{1}{4}\right) + \frac{1}{6}(1)(1) = \frac{1}{4}, \\
&&&& RHS &= \frac{1}{2}b_2(1 - c_2^2) = \frac{1}{2} \left(\frac{2}{3}\right) \left(1 - \left(\frac{1}{2}\right)^2\right) = \frac{1}{4}, \\
\ell &= 2, & j &= 3: & LHS &= b_1c_1a_{13} + b_2c_2a_{23} + b_3c_2a_{33} = \frac{1}{6}(0)(0) + \frac{2}{3}\left(\frac{1}{2}\right)(0) + \frac{1}{6}(1)(0) = 0, \\
&&&& RHS &= \frac{1}{2}b_3(1 - c_3^3) = \frac{1}{2}\left(\frac{1}{6}\right)(1 - 1^2) = 0.
\end{align*} \end{split}\]
So the \(D(2)\) condition is also satisfied, therefore this method is a fourth-order method.