6.7. Matrix decomposition exercises#
Exercise 6.1
Using pen and paper, solve the following system of linear equations using LU decomposition.
Solution
Exercise 6.2
Using pen and paper, solve the following system of linear equations using LU decomposition with partial pivoting.
Exercise 6.3
Using pen and paper, solve the following systems of linear equations using Cholesky decomposition.
(a) \( \begin{align*} 16x_1 +16x_2 +4x_3 &=-8,\\ 16x_1 +25x_2 +10x_3 &=-47,\\ 4x_1 +10x_2 +6x_3 &=-30. \end{align*} \)
(b) \( \begin{align*} 4x_1 +2x_2 +8x_3 &=36,\\ 2x_1 +17x_2 +20x_3 &=50,\\ 8x_1 +20x_2 +41x_3 &=122. \end{align*} \)
(c) \( \begin{align*} 9x_1 -9x_2 -6x_4 &=12,\\ -9x_1 +25x_2 +8x_3 -10x_4 &=-116,\\ 8x_2 +8x_3 -2x_4 &=-58,\\ -6x_1 -10x_2 -2x_3 +33x_4 &=91. \end{align*} \)
Exercise 6.4
Using pen and paper, calculate the QR decomposition using the Gram-Schmidt process of the following matrices:
(a) \( \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}\);
(b) \(\begin{pmatrix} 6 & 6 & 1 \\ 3 & 6 & 1 \\ 2 & 1 & 1 \end{pmatrix}\);
(c) \(\begin{pmatrix} 1 & 2 & 1 \\ 1 & 4 & 3 \\ 1 & -4 & 6 \\ 1 & 2 & 1 \end{pmatrix}\).
Exercise 6.5
Using pen and paper, calculate the QR decomposition using the Householder transformations of the following matrices:
(a) \( \begin{pmatrix} 3 & 0 \\ 4 & 5 \end{pmatrix}\);
(b) \(\begin{pmatrix} 1 & 2 & 4 \\ 0 & 0 & 5 \\ 0 & 3 & 6 \end{pmatrix}\);
(c) \(\begin{pmatrix} 2 & -2 & 18 \\ 2 & 1 & 0 \\ 1 & 2 & 0 \end{pmatrix}\).