1.4. Special matrices#

Some matrices have certain properties which makes them useful for various mathematical applications. Understanding special matrices and their properties is important for gaining a deeper insight into linear algebra and its practical applications.

Name

Definition

Example

Square matrix

An \(m \times n\) matrix where \(m = n\)

\(\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\)

Zero matrix

An \(m \times n\) matrix of zeros

\(\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}\)

Diagonal matrix

A non-zero square matrix where \(a_{ij} = 0\) where \(i \neq j\)

\(\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}\)

Identity matrix

A square matrix \(I\) such that \([I]_{ij} = \begin{cases} 1, &i = j, \\ 0, & \text{otherwise} \end{cases}\)

\(\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \)

Symmetric matrix

A square matrix \(A\) such that \(a_{ij} = a_{ji}\)

\(\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 4 \\ 3 & 4 & 1 \end{pmatrix}\)

Upper triangular matrix

A square matrix \(A\) such that \(a_{ij} = 0\) where \(i > j\)

\(\begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{pmatrix}\)

Lower triangular matrix

A square matrix \(A\) such that \(a_{ij} = 0\) where \(i < j\)

\(\begin{pmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 4 & 5 & 6 \end{pmatrix}\)

Theorem 1.5 (Properties of special matrices)

For any \(m \times n\) matrix \(A\) and the zero matrix is the neutral element with respect to matrix addition and multiplication, i.e.,

  • \( A + \mathbf{0} = \mathbf{0} + A = A\)

  • \( A \mathbf{0} = \mathbf{0} A = \mathbf{0}\)

  • \(I A = A I = A\)

  • \(AA^{-1} = I\) where \(A^{-1}\) is the inverse of \(A\) (see inverse matrices)

  • If \(A = A^\mathsf{T}\) then \(A\) is a symmetric matrix