6.7. Transformations exercises#

Exercise 6.1

Which of the following transformations are linear transformations?

(a)   \(T: (x, y)^\mathsf{T} \mapsto (0, y)^\mathsf{T}\)

(b)   \(T: (x, y)^\mathsf{T} \mapsto (x, 5)^\mathsf{T}\)

(c)   \(T: (x, y, z)^\mathsf{T} \mapsto (x, x - y)^\mathsf{T}\)

(d)   \(T: (x, y, z)^\mathsf{T} \mapsto \begin{pmatrix} x + y \\ z \end{pmatrix}\)

(e)   \(T: (x, y)^\mathsf{T} \mapsto (3x + 1, y)^\mathsf{T}\)

(f)   \(T: f(x) \mapsto \dfrac{\mathrm{d}}{\mathrm{d}x} f(x)\)

(g)   \(T: f(x) \mapsto xf(x)\)

(h)   \(T: \mathbb{C}^2 \to \mathbb{C}\) where \(T: (x, y)^\mathsf{T} \mapsto x + y\)

(i)   \(T: \mathbb{C}^2 \to \mathbb{C}\) where \(T: (x, y)^\mathsf{T} \mapsto x y\)

(j)   \(T: \mathbb{C}^2 \to \mathbb{C}\) where \(T: (x, y)^\mathsf{T} \mapsto \bar{y}\)

(\(\bar{x}\) is the complex conjugate of \(x = a + bi\) defined by \(\bar{x} = a - bi\).)

Exercise 6.2

A linear transformation \(T: \mathbb{R}^2 \to \mathbb{R}^2\) is defined by \(T: (x, y)^\mathsf{T} \mapsto (-x + 3y, x - 4y)^\mathsf{T}\). Determine the transformation matrix for \(T\) and hence calculate \(T (2, 5)^\mathsf{T}\).

Exercise 6.3

A linear transformation \(T: \mathbb{R}^2 \to \mathbb{R}^2\) is defined by \(T: (x, y)^\mathsf{T} \mapsto (x - 2y, 2x + 3y)^\mathsf{T}\). Given \(T(\vec{u}) = (-1, 5)^\mathsf{T}\) determine \(\vec{u}\).

Exercise 6.4

\(T: \mathbb{R}^3 \to \mathbb{R}^3\) is a linear transformation such that

\[\begin{split} \begin{align*} T\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} &= \begin{pmatrix} 1 \\ -2 \\ -4 \end{pmatrix}, & T\begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} &= \begin{pmatrix} 6 \\ 5 \\ 10 \end{pmatrix}, & T\begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} &= \begin{pmatrix} 2 \\ 4 \\ 7 \end{pmatrix}. \end{align*} \end{split}\]

Find the transformation matrix for \(T\).

Exercise 6.5

Rotate the position vector \((2, 1)^\mathsf{T} \in \mathbb{R}^2\) by angle \(\pi/6\) anti-clockwise about the origin.

Exercise 6.6

Reflect the position vector \((5, 3)^\mathsf{T} \in \mathbb{R}^2\) about the line that passes through \((0, 0)\) and makes an angle \(\pi/3\) with the \(x\)-axis.

Exercise 6.7

A square with side lengths 2 is centred at the co-ordinates \((3, 2)\). It is to be translated so the centre is at the origin, rotated by an angle \(\pi/3\) clockwise about the origin and then translated back to its initial position.

(a)   Write down a matrix containing the homogeneous co-ordinates for the vertices of the square.

(b)   Determine the transformation matrices that perform the three transformations.

(c)   Calculate the composite transformation matrix and apply with to the co-ordinate matrix from part (a).