3.8. Vectors Exercises#

Exercise 3.1

The points \(U\), \(V\) and \(W\) have the following position vectors:

\[\begin{split} \begin{align*} \vec{u} &= \begin{pmatrix} 2 \\ 3 \end{pmatrix}, & \vec{v} &= \begin{pmatrix} 3 \\ -2 \end{pmatrix}, & \vec{w} &= \begin{pmatrix} 1 \\ 6 \end{pmatrix}. \end{align*} \end{split}\]

Find:

(a)   \(2 \vec{u} + \vec{w}\)

(b)   \(\vec{w} - \vec{u}\)

(c)   a unit vector pointing in the same direction of \(\vec{u}\)

(d)   a unit vector pointing in the opposite direction of \(\vec{v}\)

(e)   a vector pointing in the same direction as \(\vec{v}\) but half its length

(f)   \(\overrightarrow{UV}\)

(g)   \(\overrightarrow{UW}\)

(h)   \(\vec{u} \cdot \vec{w}\)

(i)   the angle \(\angle VUW\)

(j)   show that \(\vec{u}\) is at right angles to \(\vec{v}\)

(k)   \(\vec{v} \times \vec{w}\)

Exercise 3.2

Write \(\vec{u} = (2,7,1)^\mathsf{T}\) as:

(a)   a linear combination of \(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}\), \(\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}\) and \(\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}\).

(b)   a linear combination of vectors \(\vec{f}_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \vec{f}_2 = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}\) and \(\vec{f}_3 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}\).

Exercise 3.3

Find \(k\) such that the vectors \(\vec{u}\) and \(\vec{v}\) are perpendicular:

(a)   \(\vec{u} = \begin{pmatrix} 1 \\ k \\ -2 \end{pmatrix}\) and \(\vec{v} = \begin{pmatrix} 2 \\ -5 \\ 4 \end{pmatrix}\) in \(\mathbb{R}^3\).

(b)   \(\vec{u} = \begin{pmatrix} 1 \\ 0 \\ k + 2 \\ -1 \\ 2 \end{pmatrix}\) and \(\vec{v} = \begin{pmatrix} 1 \\ k \\ -2 \\ 1 \\ 2 \end{pmatrix}\) in \(\mathbb{R}^5\).

Exercise 3.4

Which pair of the following vectors is perpendicular? For the remaining pairs, what is the angle between them?

\[\begin{split} \begin{align*} \vec{u} &= \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, & \vec{v} &= \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}, & \vec{w} &= \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}. \end{align*} \end{split}\]