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Abstract

Wave run-up and overtopping of coastal structures have been extensively studied

over the last 30 years to provide guidance for the construction of sea defences.

Numerical models based on fluid flow equations can provide a useful aid in the

design of these coastal defences. Computers have now advanced sufficiently to

enable programs written to solve the flow equations to run on hardware that is

readily available (e.g., desktop or laptop computers), thus giving engineers the

ability to conduct multiple runs of an experiment, reconfigure the bathymetry,

change the wave conditions and collect data from anywhere in the solution domain.

An existing numerical model, AMAZON, based on the non-linear Shallow Wa-

ter Equations (SWE) was used to give wave height and overtopping discharges

for a series of violent overtopping experiments. A second-order accurate high-

resolution finite-volume method was used to solve the SWE. The source terms

that model the bed topography were treated using the Surface Gradient Method

(SGM). The numerical model gave overtopping predictions to within 20% of the

experimental overtopping discharges for cases where the wave conditions at the

sea wall were not severely impacting. However, wave height comparisons showed

that the SWE could not model wave propagation in intermediate depth water.

The Boussinesq class of equations was chosen to extend the numerical mod-

elling of wave propagation, run-up and overtopping into intermediate depth water.

A hybrid finite-volume/finite-difference solver was used to solve two different ex-

tended Boussinesq formulations, one of which was chosen to model a range of

run-up and overtopping experiments. It was found that the numerical model was

able to model wave propagation where the typical depth to wavelength ratio was

less than 0.35 for both regular and irregular waves. However, the numerical model

was not able to accurately model breaking waves. Comparisons between overtop-

ping discharges from the physical experiments and the numerical model showed

that, in the majority of cases, the numerical model was able to provide predictions

to within an absolute relative error of 3. It was found that as the gradient of the

seawall increased, so did the accuracy of the numerical overtopping predictions.
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Chapter 1

Introduction

Advances in digital computing technology in the twentieth century has given rise

to a new branch of mathematics – Computational Fluid Dynamics (CFD). CFD is

concerned with the use of computers to approximate the solutions of mathematical

equations describing fluid flow. These mathematical equations are generally in the

form of a system of partial differential equations (PDE). It is rare that an exact

analytical solution to a system of PDEs exists except in special circumstances,

hence the need for a method of approximation. The solution process required to

solve these governing equations usually takes the form of an algorithm, a series

of recursive steps that will eventually lead to a solution. CFD algorithms often

require thousands of calculations to achieve a solution, therefore are dependent

upon the computational power available.

The equations that describe the behaviour of fluids have been known for cen-

turies. It was the Dutch mathematician Daniel Bernoulli (1700–1782) who was

the first to study the motion of a fluid utilising the principle of conservation of

mass. Bernoulli’s work on fluid dynamics titled Hydrodynamica (Bernoulli, 1738)

gave rise to the modern term Hydrodynamics to describe the study of liquids.

Leonard Euler (1707–1783) who was a contemporary of Bernoulli, derived a set

of equations directly from Newton’s laws of motion and the conservation of mass,

momentum and energy. Euler’s equations, whilst a good model of water flow,

describe incompressible flow, i.e., they assume a constant density. Claude Navier

(1785–1836) extended the Euler equations to model compressible flow by taking

into account the forces acting between the molecules of a fluid (O’Connor and

Robertson, 2000). The resulting system of equations have become known as the

Navier-Stokes equations. The reason for this was that Navier did not fully un-

derstand the inclusion of shear stresses in his formulation, despite his formulation

being correct and it was later in 1845 that George Stokes (1819–1903) also de-

1
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rived Navier’s system of equations taking into account internal friction between

fluids. It should be noted that although Stokes provided a correct derivation for

Navier’s equations for which he is credited, the French mathematician Jean Claude

Saint-Venant (1797–1886) published a correct derivation two years before Stokes.

However, Saint-Venant received no such accreditation (Anderson, 1997).

Although Saint-Venant’s name is omitted from the Navier-Stokes formulation,

he does lend his name to another system of equations that model shallow water

flows. The Saint-Venant equations, which are also commonly known as the one-

dimensional Shallow Water Equations (SWE), are a simplified form of the full

Navier-Stokes system. By assuming a constant velocity profile in the vertical

direction, the SWE are derived by integrating the Navier-Stokes equations in the

vertical direction. Therefore the SWE represent a depth-averaged form of the

Navier-Stokes equations. The SWE are significantly easier than the full Navier-

Stokes formulation to solve in both the complexity of the solution algorithm and

the computational resources required. A property of the SWE is that they are

hyperbolic in nature and therefore can admit discontinuities into the solution

(Hirsch, 1988). This means that the SWE can model wave propagation where wave

breaking is likely to occur without compromising the stability of the numerical

solution.

The assumption of a vertical velocity profile used in the simplification of the

Navier-Stokes equations means that the SWE are only really applicable for shal-

low water flows (the formal definition of what constitutes shallow water is given

in Section 1.1.3). From an maritime engineering standpoint, this means that the

usefulness of the SWE is limited to near shore wave propagation cases only. In

order to model wave propagation in deeper water a number of models have been

suggested. Among these are the Boussinesq-type models (Peregrine, 1967; Wit-

ting, 1984; Madsen et al., 1991; Nwogu, 1993) and the Green-Naghdi equations

(Green and Naghdi, 1976). Both of these models include additional terms that

introduce dispersion into the mass and momentum equations so that the proper-

ties of wave propagation in deeper water are retained. Of these two models that

include dispersion, it is the Boussinesq-type models that has received the most

attention. In general, Boussinesq-type models require a higher order accurate nu-

merical solver than the SWE but still represent a significant improvement over

the Navier-Stokes equations when considering the computational effort required

to solve the governing equations.

It was inevitable that mathematical models would lend themselves as a tool

for applications in coastal engineering. Research in the field of coastal engineer-



3

ing is primarily focused on the design and construction of structures that protect

inland areas and harbours. These structures can be located offshore, e.g., break-

waters and harbour walls whose function is to protect the near shore region, or

onshore, e.g., seawalls and dikes that protect inland areas from damage caused

by wave overtopping and flooding (Fig. 1.1). Traditionally the knowledge base

on flow in coastal regions has been gathered by field observations and labora-

tory experiments. Information gathered by field observations tends to be very

time consuming and expensive to collate. This process usually consists of placing

measuring instruments at the point of interest and recording the sea state and

overtopping over time. However, coastal engineers are generally only interested in

the ‘worst case scenarios’ that occur when conditions are at their most extreme,

i.e., during a storm. As storm predictions can often be unreliable, the instru-

mentation has either got to be installed over a long period of time which in itself

leads to the problems of maintenance, or installed immediately prior to a storm

occurring which can limit the size of the area under study. The disadvantages of

relying upon field observations can be overcome by use of physical experiments

conducted in the controlled environment of a laboratory. The physical experiments

are a small scale representation of a coastal region constructed in a wave tank.

Experiments of this type can allow a particular configuration to be run repeatedly

thus providing enough data for meaningful analysis. However, small scale physical

models are expensive and inflexible. The costs associated with constructing the

model and performing the experiments can become substantial. In addition, once

constructed a change in the configuration, for example the bathymetry, is not a

trivial matter.

A numerical model based on the equations of fluid flow has several advantages

over a physical modelling approach. Firstly the cost of running a numerical model

is significantly less than that of a physical model. Once the software has been

developed, multiple experiments can be performed and data collected at almost

no additional cost. Also a numerical model provides the flexibility to change an

experimental configuration instantly, e.g., wave conditions, instrument location,

bathymetry, coastal structures and water depth. Finally, numerical models are

portable, that is they can be installed on a desktop computer, a laptop or sent

via electronic communications. It is highly unlikely that numerical models will

ever totally replace the need for physical experimentation, but they do provide

an important tool for engineers when considering experimental design and design

of coastal structures. Before numerical models can be applied in this way with a

degree of confidence, they have to be developed and extensively validated against
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Figure 1.1: Wave overtopping of a harbour wall. Whitby, United Kingdom. (Pho-
tograph by the author)

the physical models to ensure that the predictions provided by the numerical model

closely match those of the physical model.

The origin of numerical methods for solving mathematical equations, in par-

ticular PDEs is attributed by Roache (1972) to a paper by Richardson (1910).

Richardson presented an arithmetic solution to a number of PDEs including

Laplace’s equation, distinguished between hyperbolic and elliptic problems, de-

scribed a treatment for the boundary conditions, introduced the idea of error anal-

ysis and comparisons between calculated solutions and exact solutions. Finally,

Richardson applied his numerical method to a real world problem of determining

the stresses action on a masonry dam. This methodology that Richardson used in

his 1910 paper is the basic methodology adopted by subsequent researchers. The

method that Richardson applied to solve PDEs was the finite-difference method.

This is one of the simplest and widely used numerical methods. The solution do-

main is discretised into a number of solution points, or computational nodes, that

contain the current solution of the system at a point in time. Finite-differences,

derived from a series approximation of a function, are used to approximate par-

tial derivatives in the governing equations by using the values of the neighbouring

nodes (see Section 4.2). Richardson only used values from the previous time step

for the calculation of the values for the next time step. Liepman (1918) showed

that the general method of finite-differences can be greatly improved in terms of

the convergence rate by using the values at the nodes for the next time step where

available (these type of method have become known as Successive Over Relaxation
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methods or SOR methods). The improvement made by Liepman set the tone for

what was to follow in the discipline of CFD, i.e., that a relatively minor alteration

in an existing method could significantly reduce the effort required to achieve a

solution (Roache, 1972).

One of the most important publications in the field of CFD was that of Courant,

Friedrichs and Lewy (1928) which was later translated into English in Courant

et al. (1967). In their paper, Courant et al. proved the existence and uniqueness

of solutions to hyperbolic PDEs and as a result also provided what is now known

as the CFL condition. The CFL condition states that in order for a numerical

PDE solver to converge to a solution, the time step used must be less than the

time taken for a wave to travel to adjacent grid points. A parameter called the

Courant number is introduced (denoted by ν here) that assumes a value such that

the CFL condition is always satisfied. Therefore, given the spatial step lengths,

the fluid velocities and ν, the maximum time step can be calculated that ensures

the numerical scheme remains stable.

The first use of the digital computer for a hydrodynamic application was made

in the late 1960s by Cunge et al. (Cunge, 1987; Hu, 2000) where a four point im-

plicit box scheme (also known as a Preissmann scheme) was used to solve the one-

dimensional shallow water (Saint-Venant) equations. Extension to two-dimensions

was achieved by Leendertse (1967) and Abbot et al. (1973) where an Alternation

Direction Implicit (ADI) method was use to solve the two-dimensional SWE. ADI

methods split the two-dimensional governing equations into two one-dimensional

equations that are solved using a one-dimensional solver. This development lead to

an increased interest in using ADI methods for modelling flow in rivers, estuaries

and near shore coastal regions (Falconer, 1976; Weare, 1976; Stelling, 1984).

There are two major disadvantages of using the finite-difference method to solve

PDEs such as the SWE. The first is that finite-difference methods are generally

not suitable for solving hyperbolic systems of equations near discontinuities, i.e.,

bore wave representation of a breaking wave (Fagherazzi et al., 2004), as spurious

oscillations tend to contaminate the solution. The second is that it when applied

to a Cartesian coordinate system, the finite-difference stencil provides a poor rep-

resentation of irregular boundaries. This deficiency has been previously overcome

by use of a boundary fitted coordinate system where the governing equations are

transformed for the new coordinate system (Johnson and Thompson, 1978; Bar-

ber, 1992; Borthwick and Kaar, 1993). Another approach for modelling irregular

boundaries is to use a numerical method that does not require an orthogonal

mesh. Finite-volume methods is one such example where the solution domain is
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constructed using arbitrary shaped solution cells so that irregular topographies

can be modelled. Finite-volume methods solve the integral form of the governing

equations, which are valid in both discontinuous and smooth regions, averaging

the solution across the finite-volume cell.

Finite-volume methods have been used extensively to solve the SWE. Ming-

ham and Causon (1998), Zhao et al. (1994), Zhao et al. (1996), Alcrudo and

Garćıa-Navarro (1993), Hu et al. (1998), Zhou et al. (2001) and Shiach et al.

(2004) all apply a finite-volume method where there exists a discontinuity at the

cell boundaries, also known as Riemann problems. In its simplest terms a Rie-

mann problem consists of an initial value problem where two constant states are

separated by a discontinuity. Godunov (1959) in his seminal paper presented a

numerical scheme for hyperbolic equations that required the solution of a Rie-

mann problem, and thereafter, methods that utilise Riemann solvers are known

as Godunov-type methods (Toro, 1997). Various approximate and exact Riemann

solvers exist and have been used in Godunov-type schemes. The HLL (Harten,

Lax and van Leer, 1983) approximate Riemann solver was used in Mingham and

Causon (1998), Hu et al. (1998) and Zhou et al. (2001) and was found to be accu-

rate and robust in practice. The approximate Riemann solver of Roe (1981) was

used in Dodd (1998), Hubbard and Dodd (2002) and Alcrudo and Garćıa-Navarro

(1993) and a Weighted Average Flux (WAF) method was used by Toro (1989,

1992) (Fagherazzi et al., 2004).

A treatment of the source terms in the SWE that model bed topography, bed

friction and shear stresses is needed in order to apply the SWE to model flow in

estuaries and coastal regions. Several approaches have been suggested for use in

conjunction with finite-volume methods. Bermudez and Vázquez-Cendón (1994),

Vázquez-Cendón (1999) and Castro et al. (2004) all apply an upwind approach for

their treatment of the source terms. This upwind approach entails a complicated

treatment where the source terms are projected onto the basis of eigenvectors of the

Jacobian matrix when using Roe’s scheme (Garćıa-Navarro and Vázquez-Cendón,

2000). Leveque (1998) treated the source terms by introducing a Riemann problem

in the centre of each grid cell whose flux difference exactly cancels the source terms.

Leveque’s method performs well for quasi-steady problems but is reported to be

less successful for transcritical flow with a shock (Zhou et al., 2001). The method

of fractional steps is another method that has been used for the treatment of source

terms. The governing equations are split so that a finite-volume method is used to

solve the homogeneous inviscid terms, and a simple Ordinary Differential Equation

(ODE) solver is used to solve the source terms. Hu et al. (2000) demonstrated that
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using a first order implicit Euler method for the source terms and a symmetric

operator sequence provides an accurate treatment, although it was noted that this

approach provides an extra constraint on the maximum allowable time step. A

different approach entirely from the approaches listed above was one suggested

by Zhou et al. (2001). They suggested using the water surface elevation, i.e.,

the height of the water above and arbitrary datum, as the basis of monotonic

reconstruction as opposed to the water depth used previously in Godunov-type

schemes. Therefore, any perturbations between the treatments of the inviscid

terms and the bed terms in the balancing approaches of Leveque (1998) and Hu

et al. (2000) do not affect the solution. This treatment, labelled the Surface

Gradient Method (SGM), is a simple extension of a Godunov-type scheme and

the additional computational cost is negligible.

Recently, various models have been developed that utilise the SWE to model

water flow in near shore coastal regions. Kobayashi et al. (1987) and Kobayashi

and Wurjanto (1989) are perhaps the first to use the SWE to model run-up and

reflection on impermeable rough slopes. Van Gent (1994, 1995) developed their

model called ODIFLOCS based upon the concepts of Hibberd and Peregrine (1979)

and it has been used to model wave overtopping of sea dikes (Niemeyer et al., 2002).

ANENOME OTT developed by Dodd (1998) and Hubbard and Dodd (2002) and

AMAZON by Hu et al. (2000) have both used similar finite-volume schemes to

model run-up and overtopping of shallow sloping structures (Richardson et al.,

2002). Richardson et al. (2001) and Shiach et al. (2004) focused on overtopping

of near vertical structures caused by violent interaction of the waves breaking

against the structure. Violent wave overtopping provides a tougher challenge for

a numerical model than wave overtopping of gentle sloping structures modelled

previously. It was found that whilst the SWE can provide good predictions of

overtopping volumes for violent wave overtopping, the absence of dispersion terms

resulted in poor predictions for the wave heights in the intermediate depth water

and thus provides a restriction upon the applicability of the SWE (Shiach et al.,

2004).

Attempts at extending the range of applicability of depth-averaged numerical

models of run-up and overtopping to model flow in deeper water have mainly cen-

tred around the use of Boussinesq-type models. Peregrine (1967) used his new

formulation to model solitary wave propagation on a sloping beach. An analysis

of the dispersion properties of Peregrine’s formulation suggests that his equations

do not represent a significant improvement over the SWE when considering mod-

elling the transition between deep and shallow water (Nwogu, 1993). Madsen et al.
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(1997a,b) and Sørensen et al. (1998) produced a series of papers examining surf

zone dynamics by introducing a wave breaking model to their existing Boussinesq

equation system (Madsen et al., 1991; Madsen and Sørensen, 1992). Lynett et al.

(2002) used the extended formulation of the Boussinesq equations by Liu (1994)

to which to apply their moving boundary algorithm for use in wave run-up cases.

Shiach et al. (2005) suggested a hybrid model where the extended Boussinesq

equations of Nwogu (1993) are used in the intermediate zone and the SWE are

used to model shallow water and run-up and violent overtopping of a near verti-

cal seawall. This approach required a careful treatment of a boundary matching

procedure combining two different governing equations with two different solution

methods. A more elegant approach to producing a hybrid model was suggested

almost simultaneously by Erduran et al. (2005) and Borthwick et al. (2005). Both

papers propose a hybrid scheme to solve Madsen and Sørensen’s extended Boussi-

nesq equations where a finite-volume solver is used for the inviscid (SWE) terms

and a finite-difference solver for the dispersion and bed source terms. Borthwick

et al. (2005) used a second-order treatment of the time derivatives whilst Erduran

et al. (2005) favoured the fourth-order scheme used by Wei and Kirby (1995) to

integrate the equations through time.

1.1 Wave Theory

There are many different forms of waves that occur in many different media but

for the purposes of this study, only waves that significantly affect coastal regions

are discussed here. Water waves occur when the water is disturbed by some

external force causing a disturbance in the free surface that propagates due to

the fluid properties of water. The classification of waves is made on the basis of

the physical parameters which characterise the waves: the wave height H , the

wavelength L, the wave period T and the water depth d (for a formal definition of

these parameters see Section 1.1.1). Various types of wave phenomena are listed

with the associated wave period and the generating force in Table 1.1 (Koutitas,

1988). For the purposes of this study, wind generated waves of the type that are

typically seen in coastal zones are of most interest although it should be noted that

the numerical models presented here have been previously validated for tsunamis

(Richardson et al., 2002; Watts et al., 2005) and tidal waves (Zhou et al., 2001).

It is fundamental to the design of coastal structures to understand the prop-

agation and formation of waves from deep to shallow water. Linear wave theory

(sometimes called Airy wave theory after English mathematician George Airy)
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Table 1.1: Classification of wave phenomena and their generating force.

Phenomena Period (T ) Generating force

Wind generated waves 0–15 s Pressure of wind on water surface

Swell 0–30 s Long distance wind waves

Surf beats 1–5 mins Grouping of breaking waves

Tsunami 5–60 mins Seismic activity

Tide 12-24 hours Moon/sun influence on earth gravity

provides an understanding of these processes and formal definition of terms used

to describe surface waves. In the following sections these definitions are given as

well as descriptions of wave evolution and the dispersion relation.

1.1.1 Definition of terms

The terms used in linear wave theory are defined in Fig. 1.2 and Table 1.2.

SWL

Bed

a

η

d

H

L

Water surface

Figure 1.2: Diagram of a one-dimensional wave showing the definitions used in
linear wave theory.

1.1.2 Particle motion

There are two ways in which to visualise the motion of individual fluid particles

(Silvester, 1974): the first is to concentrate on a fixed point in space and observe
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Table 1.2: Linear Wave theory: definition of terms.

Term Definition

SWL Still Water Level: the surface elevation of still water.

a Wave amplitude: the height of the wave crest above SWL;

d Water depth between the bed surface and the SWL;

η Water surface elevation: distance between the water surface
and the SWL;

H Wave height: distance between the crest and trough of a wave

L Wavelength: distance between two corresponding points on
successive wave forms

T Wave period: the time that elapses during the period of one
wavelength;

C = L/T Wave celerity: the phase velocity of the crest of a wave.

the changes that occur in time (known as Eulerian presentation) and the second

is to observe the path of an arbitrary fluid particle in time (known as Lagrangian

presentation). Here, the Lagrangian presentation is used to describe particle mo-

tion as it shows more clearly the transition between deep, intermediate and shallow

water that are defined later.
propagation direction

SWL

z

d

a

propagation direction propagation direction

Figure 1.3: Lagrangian presentation of the orbital motion of a fluid particle: deep
water (left), intermediate depth water (middle) and shallow water (right) (Sil-
vester, 1974).

Consider a regular, sinusoidal wave propagating in a one-dimensional channel

(Fig. 1.3). In deep water, a fluid particle at the free surface moves in a circular

orbit with a radius equal to that of the wave amplitude a. As the depth, z, of

the fluid particle in question increases, the radii of the circular orbits decrease

exponentially. The radii of the motion orbits are given by the function (Sørensen,

1993)

r(z) = a exp

(

−
2πz

L

)

, (1.1)
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where L is the wavelength of the free surface wave. Using Eq. (1.1) to calculate

the radius of a motion orbit when z = L/2 gives

r

(

L

2

)

= a exp(−π) ≈ 0.043a. (1.2)

Therefore when the depth of the fluid particle is half of that of the wavelength,

the radius of the motion orbits are less than 1/20th that of the radius at the

free surface. This leads to the classification of the deep water limit discussed in

Section 1.1.3.

The motion of a fluid particle in intermediate depth water follows an elliptical

orbit where the major axis decreases as z increases. This leads to the particle

motion in shallow water where the orbits are also elliptical. However, the major

axis remains constant between the free surface and the bed whilst the minor axis

decreases when the particle in question is near the bed.

1.1.3 Relative depth ratio

When discussing wave theory and the formation and propagation of waves it is

common to classify the depth of the water using three different terms: deep water,

transitionary or intermediate water and shallow water. The formal classification

for these three terms is given in terms of the relative depth ratio which is given

by

Relative depth ratio =
d

L
, (1.3)

and the classification of water depth is given in Table 1.3.

Table 1.3: Relative depth ratio and the classification of water depth.

Relative depth Category

d/L > 1/2 Deep water

1/2 ≤ d/L ≤ 1/20 Intermediate depth water

d/L < 1/20 Shallow water

The equations describing fluid flow in intermediate and shallow water are likely

to be more complex than those for deep water conditions (Silvester, 1974). When

waves approach shallow water, the transition from deep water causes the waves to

shoal when d/L < 1/2 (Fig. 1.4). The wave period remains constant whilst the

wavelength decreases and the wave height increases. This causes an asymmetry in
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the wave profile. In shallow water, the wave height becomes too large to sustain

the shape of the wave and breaking occurs. McCowan (1894) defined the point

at which a wave breaks using the ratio of wave height to water depth, where a

value of H/d > 0.78 indicates breaking. However, this ratio does not take into

account that waves can break in deep water as well. Longuet-Higgins (1997) used

the value of the wave slope given by ak, where k is the wavenumber Eq. (1.4).

The breaking criterion using the wave slope is given as ak > 0.32.

Deep water
Intermediate
depth water Shallow water

d/L > 1/2 1/2 ≥ d/L ≥ 1/20 d/L < 1/20

Beach

Figure 1.4: Relative depth ratio and classification of water depth.

1.1.4 Dispersion relation

The wavelength and wave frequency of a wave are related by the linear dispersion

relation (Krogstad and Arnsten, 2000). In order to determine the wave celerity

(i.e., the wave velocity) C, two new parameters are introduced:

k =
2π

L
, (1.4)

ω =
2π

T
, (1.5)

where k is known as the wavenumber and ω is the wave frequency.

Consider a regular sinusoidal wave of amplitude a, period T and wavelength L

(Krogstad and Arnsten, 2000)

η(x, t) = a sin

(

2π

T
t −

2π

L
x

)

= a sin(ωt− kx). (1.6)

Then the dispersion relation giving ω in terms of k is described by (Lamb, 1945;
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Billingham and King, 2000; Stewart, 2004)

ω2 = gk tanh(kd). (1.7)

Therefore the dispersion relation also restricts the values that the wave period and

wavelength can take depending on the value of the other variable.

The wave celerity C can be written in terms of k and ω giving

C =
ω

k
. (1.8)

Using the dispersion relation given in Eq. (1.7), Eq. (1.8) can be rearranged to

give the wave celerity in terms of k and ω

C =
g

ω
tanh(kd). (1.9)

For shallow water the wave celerity is calculated by noting that when d & L

then kd is small meaning that the approximation

tanh(kd) ≈ kd (1.10)

can be used. This leads to the following expression for ω

ω = k
√

gd. (1.11)

Therefore, substituting Eq. (1.11) into Eq. (1.8) gives

C =
k
√

gd

k
=
√

gd, (1.12)

which is the wave celerity for shallow water. Note that in shallow water, only the

water depth determines the velocity of waves. A similar process can be applied

for deep water. In deep water, d ( L, then kd is large meaning that

tanh(kd) ≈ 1, (1.13)

and the wave frequency becomes

ω =
√

gk. (1.14)

Along with Eq. (1.8), Eq. (1.14) gives the following expression for the wave celerity
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in deep water

C =

√

g

k
. (1.15)

1.1.5 The Froude number

The Froude number is a dimensionless parameter that is used to indicate the

influence of gravity on fluid motion. It is defined as the ratio of the inertial force

to the gravitational force and for shallow water waves can be written as (Weisstein,

2007)

Fr =
u√
gd

, (1.16)

where u is the velocity of the fluid. The Froude number is used to classify flow as

either supercritical or subcritical (Table 1.4). Supercritical flow occurs when the

flow velocity is greater than the free surface velocity and surface waves are unable

to propagate against the main direction of flow. Flow of this form occurs when the

current is strong and the water is shallow, for example, flow in fast moving streams

or wave run-up on a beach. Subcritical flow occurs when the flow velocity is less

than the free surface velocity and surface waves are able to propagate against the

main direction of flow. Water in a subcritical flow region appears calmer than

that of a supercritical flow region.

Table 1.4: Classification of subcritical, critical and supercritical flow

Froude number Classification of flow

Fr < 1 Subcritical

Fr = 1 Critical

Fr > 1 Supercritical

Transition from subcritical flow to supercritical flow can only occur due to a

change in the bathymetry, e.g., a bump in the bed topography (Fig. 1.5) or the

narrowing of the channel. This causes the wave celerity to decrease and as a result

the Froude number to increase. Where supercritical flow encounters a subcritical

flow region, an upstream travelling hydraulic jump forms resembling a step in the

free surface (Fig. 1.6).
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Fr < 1

Fr = 1

Fr > 1

Figure 1.5: Subcritical to supercritical flow transition caused by a bump in the
bed topography.

supercritical flow subcritical flowhydraulic jump

uin

uout

din

dout

Figure 1.6: Supercritical to subcritical flow transition with hydraulic jump.

1.2 Physical Modelling

In order to study the interaction between waves and structures it is convenient

to conduct physical experiments in a laboratory environment. These experiments

are typically conducted in a wave tank, in which is constructed a small scale

representation of the coastal zone under study (Fig. 1.7). Waves are generated in

the water to simulate regular waves of a constant period or random waves that

are sampled from a given spectrum (Section 1.2.1). The water surface elevation

is measured by gauges, placed throughout the wave tank and connected to a

computer, that record the water depth over time. For experiments where the

velocities of individual fluid particles are required, neutrally buoyant particles

may be added to the water to allow a Particle Image Velocimetry (PIV) system

to detect and calculate the movement vectors of the fluid. Overtopping volumes

are recorded by placing a container that collects any water that has overtopped
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and then they are weighed by a load cell to calculate the volume of water. These

experiments can either be conducted to examine one-dimensional flow in a wave

flume or two-dimensional flow in a wave basin (the convention of referring to flow

as one or two-dimensions used here refers to the dimension of the computational

mesh applied to discretise the solution domain).

Figure 1.7: Typical example of a one-dimensional wave flume. The University of
Edinburgh (photograph courtesy of Tom Bruce).

Over the last 30 years, small scale physical experiments have been used to

study wave overtopping of coastal structures. The physical parameters of the

experiments are expressed in dimensionless form so as to allow for comparison be-

tween differing configurations. Guidance on mean overtopping discharge volumes

are given through empirical formulae derived by a regression analysis of the di-

mensionless overtopping volumes and physical parameters. Typically, experiments

are conducted for approximately 1000 wave periods to ensure that enough data is

collected for a meaningful comparison and analysis (Besley, 1999).

Goda et al. (1975) were the first to provide empirical formulae for mean over-

topping discharge rate using laboratory measurements. Guidance for tolerable

discharge rates for pedestrians, vehicles and buildings resulting from the overtop-

ping of seawalls was provided by Owen (1980) following a series of experiments

conducted at HR Wallingford. Besley (1999) concentrated on overtopping of near

vertical seawalls, in particular, violent overtopping resulting from incident wave

breaking on the structure. Typically, empirical models follow an exponential func-
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tion of the form

Q∗ = A exp(−BR∗), (1.17)

where Q∗ is the dimensionless discharge, R∗ is the dimensionless freeboard and A

and B are empirical coefficients. The values of A and B are found by a maximum

likelihood analysis based on the experimental values. Hedges and Reis (1998)

based their semi-empirical H&R model on the formula for discharge over a weir

where the water level exceeds the seawall crest level. This approach eliminates

the problem that fully empirical models have in predicting zero overtopping.

An alternative approach to empirical curve fitting methods is to use Artifi-

cial Neural Networks (ANN). ANNs were originally developed as a model of the

mammalian brain. They consist of a network of neurons that can be ‘trained’

to produce any function mapping. Once the ANN is trained using experimental

data, overtopping predictions can be made using the neural network. The trained

ANN is in essence a generalised regression function but has the advantage over the

empirical models as not being limited to the choice of any particular mathematical

function (Wedge, 2006).

1.2.1 Wave generation

Wave generation in physical model experiments is achieved by disturbing the wa-

ter at one end of the wave flume allowing the resulting waves to propagate into

the flume. The two most common types of wave generators are piston-type wave

makers where a vertical plane is oscillated in the horizontal direction thus displac-

ing a mass of water that creates the waves; and flap-type wave makers where the

vertical plane is hinged at the bottom of the flume so that vertical profile of the

motion of the plane more closely resembles that of the velocity field. In order for

a wave maker to generate waves of a desired wavelength and period the extent of

the horizontal movement of the plane (the stroke S) needs to be defined.

The calculation of S begins by first considering a simplified shallow water case

for a piston-type wave maker (Dean and Dalrymple, 1991). Galvin (1964) reasoned

that the volume of water displaced by a vertical plane oscillating in the horizontal

direction with a stroke S is equal to the volume of water contained in the crest of

a propagating wave (cf., the two shaded regions in Fig. 1.8). It can be easily seen

that the volume of water displaced by one stroke of the wave maker is dS and

that the volume of water contained in the wave crest can be found by the definite
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Figure 1.8: Simplified shallow water piston-type wave maker.

integral
∫ L/2

0

H

2
sin

(

2π

L
x

)

dx (1.18)

Evaluating the integral and equating the two volumes gives

dS =
HL

2π
(1.19)

which can be rearranged to give the height to stroke ratio for a piston-type wave

maker
(

H

S

)

piston
= kd. (1.20)

If the vertical plane is hinged at the bottom, then the volume of water displaced

by the wave maker is halved and therefore the height to stroke ratio becomes

(

H

S

)

flap
=

kd

2
. (1.21)

These two relationships will only be applicable in shallow water. For deeper

water it can be shown that using Laplace’s equation with treatments for the bound-

aries at the bed surface, the free surface and the wave maker, the first-order solu-

tion for a piston-type wave maker is (Hughes, 1993)

(

H

S

)

piston
=

4 sinh2(kd)

sinh(2kd) + 2kd
, (1.22)
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and for a flap-type wave maker

(

H

S

)

flap
=

4 sinh(kd)

sinh(2kd) + 2kd

[

sinh(kd) +
1 − cosh(kd)

kd

]

. (1.23)

The first-order solutions for the height to stroke ratio of a piston-type and flap-type

wave maker are plotted against values of kd in Fig. 1.9. The shallow water ratios

derived above are also displayed on the same axis and show that they provide a

good approximation up to the shallow water limit kd ≤ 0.3.

0
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2.5

0 1 2 3 4 5 6
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flap

kd

H
/S

Figure 1.9: The first-order solutions for the H/S ratio for piston-type and flap-type
wave makers.

The wave flume facility at the University of Edinburgh for which the flow

solvers in this study have been applied to replicate experiments (see Chapters 3

and 5) uses an absorbing flap-type wave maker. The motion of the oscillating plane

is controlled so that any reflected waves propagating towards the wave maker do

not affect the incident waves generated.

1.2.1.1 The JONSWAP spectrum

Random waves in a typical sea state may appear to be random, but can be analysed

assuming that they consist of the sum of an infinite number of sinusoids with

differing frequencies, amplitudes and direction (Goda, 2000). A plot of the energy

against the frequency for each of these wavelets gives a frequency spectrum that

can be used as a description for the sea state. Given a frequency spectrum, it
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is possible to take a random sample of n wavelets and using the principle of

superposition, composite a random sea state with the same characteristics as the

sea used to generate the frequency spectrum.

Hasselmann et al. (1973) developed a spectrum that describes surface waves

by analysing the data collected by the JOint North Sea WAve observation Project

(JONSWAP). The JONSWAP spectrum is given in terms of the significant wave

height and peak wave period by Goda (1988) as

S(f) = αH2
s f

4
p f−5γβ exp

[

−
5

4

(

fp

f

)4
]

, (1.24)

α =
0.0624

0.230 + 0.0336γ − [0.185/(1.9 + γ)]
, (1.25)

β = exp

[

−
(f − fp)2

2σ2f 2
p

]

, (1.26)

σ ≈

{

0.07 f ≤ fp

0.09 f > fp

, (1.27)

where S(f) is the spectral density, Hs is the significant wave height (mean of the

top 1/3 wave heights), f is the frequency of each wavelet, fp = 1/Tp is the peak

frequency, Tp is the peak wave period, and γ is the peak enhancement parameter

that determines the sharpness of the spectral peak. Hasselmann et al. (1973)

determined a value of γ = 3.3 based on the wave conditions of the North Sea. A

plot of the JONSWAP spectrum is shown in Fig. 1.10 for Hs = 1.0 over a range

of values for γ.

1.2.2 European Projects

Some of the work produced in this study was performed in collaborations with

other research institutes during funded projects examining the effects of wave

overtopping of coastal structures. These projects are summarised here for the

purpose of acknowledgement and to provide an understanding in the current re-

search focus in using CFD to model coastal processes.

1.2.2.1 VOWS project

The VOWS (Violent Overtopping by Waves at Seawalls) project is an EPSRC

(Engineering and Physical Sciences Research Council) funded study to examine

and provide a better understanding of violent overtopping processes. Investiga-

tors included Tom Bruce, Dr. Jonathan Pearson from the University of Edinburgh
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Figure 1.10: A plot of the JONSWAP spectrum for various values of the peak
enhancement parameter γ

and Professor William Allsop from HR Wallingford who conducted the small scale

physical modelling of violent wave overtopping at the University of Edinburgh’s

wave flume facility for one-dimensional experiments and HR Wallingford’s wave

basin for two-dimensional experiments. Numerical modelling of violent wave over-

topping was carried out at the Centre for Mathematical Modelling and Flow Anal-

ysis (CMMFA) at the Manchester Metropolitan University.

1.2.2.2 CLASH project

The CLASH (Crest Level Assessment of coastal Structures by full scale monitoring,

neural network prediction and Hazard analysis on permissible wave overtopping)

project is a European Union funded study examining the effects that scale has on

overtopping predictions and to provide a generic prediction method for the crest

height in the design of coastal structures. In addition gathering overtopping data

from multiple test sites and wave tank experiments, the numerical predictions

included applications of CFD and Artificial Neural Networks (ANN). A full list of

the collaborators can be found on the CLASH website.
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1.3 Thesis Outline

It was the aim of this study to extend the SWE based AMAZON model to be

able to model wave propagation in deeper water (d/L > 1/20), in addition to

providing predictions of wave run-up and overtopping of coastal structures. The

numerical models are compared and validated against physical experiments. The

research is presented in six chapters. An overview of the field of coastal engineering

and numerical models, introduction to linear wave theory and current prediction

methods is given in Chapter 1. An existing numerical model based on the SWE

is discussed and validated against standard test cases in Chapter 2. This model is

then applied to model a series of wave flume experiments focusing on violent wave

overtopping in Chapter 3. The use of a SWE based model of this type to provide

predictions for violent wave overtopping has never previously been examined. The

statistical analysis and comparisons with an empirical model are also presented in

Chapter 3.

The extended Boussinesq equations, along with their dispersion properties and

a numerical solver are presented in Chapter 4 and are tested against standard test

cases. A hybrid numerical scheme that can use either a SWE or a Boussinesq based

model for modelling flow in shallow or intermediate depth water where appropriate

is discussed in Chapter 5. This is the first time that this scheme has been used

to solve Nwogu’s extended Boussinesq formulation. The hybrid scheme is applied

to Madsen and Sørensen’s Boussinesq equations to model a range of run-up and

overtopping experiments.

The conclusions made as a result of the research conducted are given in Chap-

ter 6 along with further work that has been highlighted as a result of this study.

The appendices are located at the back of this thesis and include two published

papers that resulted from this work.



Chapter 2

The Shallow Water Flow Solver

Ideally, a numerical model of wave motion and interaction with solid structures

would be based on the full Navier-Stokes equations. However, due to their com-

plexity the solution methods applied to solve these equations require extensive

computational resources. Until the computing power available to engineers allow

for Navier-Stokes based models to be used, a common alternative is to use the

shallow water equations (SWE). The SWE are a simplified depth averaged form

of the Navier-Stokes equations. The depth averaging process works under the as-

sumption that particle velocity is negligible in the vertical direction as represented

in Fig. 1.3. The result of this simplifying assumption is a set of equations that

are much simpler than the Navier-Stokes equations and as a result require signif-

icantly less computational effort to solve. The simplifying assumption does mean

that the SWE are only applicable in shallow water where the depth to wavelength

ratio is in the range d/L ≤ 1/20.

This chapter is concerned with the numerical solution to the SWE both for the

homogeneous form and the inclusion of source terms for modelling bed topography.

The SWE are given in vector form and the finite-volume method is summarised

in Sections 2.1 and 2.2. The numerical solver used here to solve the inviscid form

is then presented in Sections 2.2.1–2.2.5. A comparison of the basic solver is made

against a one-dimension dam break with both a wet and dry bed (Section 2.3). The

treatment for the source terms is discussed in Section 2.4 and validated against

various standard test cases examining the numerical scheme’s ability to cope with

tidal, subcritical, supercritical, transcritical flow and discontinuities in the bed

topography (Section 2.5).

23
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2.1 The Shallow Water Equations

The SWE written in vector notation are

∂

∂t
U + ∇ · F(U) = Sb + Sf , (2.1)

where U is the vector of conserved variables, F(U) is the flux vector function, Sb

and Sf represents the vector of sources terms that model bed topography and bed

friction and ∇ = i ∂
∂x + j ∂

∂y is the gradient operator. U, F(U), Sb and Sf are given

by

U =







φ

φu

φv






, F(U) =







φq

φuq + 1
2φ

2i

φvq + 1
2φ

2j






, (2.2)

Sb =







0

gφ∂H
∂x

gφ∂H
∂y






, Sf =







0

−g
ρτfx

−g
ρτfy






, (2.3)

where φ = gh is the geopotential; g = 9.81 ms−2 is the acceleration due to gravity;

h is the water depth; u and v are the depth averaged velocities in the x- and y-

directions respectively; q = ui + vj is the velocity vector; H is the partial depth

between the bed surface and a fixed datum and τfx, τfy are the bed shear stress

terms given by

τfx = ρCfu
√

u2 + v2, τfy = ρCfv
√

u2 + v2, (2.4)

where Cf is the bed friction coefficient which can be estimated from Cf = g/C2
z

where Cz is the Chezy coefficient (Zhou et al., 2001).

The SWE are hyperbolic in nature meaning that discontinuities can be admit-

ted into the solution (Appendix A). This is important for modelling shallow water

flows as breaking waves are likely to occur when the ratio of wave height to water

depth increases.

2.2 The Finite-Volume Method

The finite-volume method solves partial differential equations (PDEs) by calcu-

lating the values of the conserved variables averaged across a finite-volume cell

(Fig. 2.1). The one major advantage that finite-volume methods have over finite-

difference methods is that a non-uniform grid can be used to model complex
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solution domains. An additional advantage of finite-volume methods has over

alternative methods such as the finite-difference method is that because the con-

servative variables are contained within the volume element and not at nodes or

surfaces, boundary conditions can be applied without specifically changing the

values of the conserved variables.

L1

L2

L3

L3
Uij

Figure 2.1: Finite-volume cell.

An integral form of the of the SWE is achieved by integrating the homogeneous

form of Eq. (2.1) over a volume element of area A0 as in Fig. 2.1 (Mingham and

Causon, 1998)
∂

∂t

∫∫

A0

U dA0 +

∫∫

A0

∇ · F(U) dA0 = 0. (2.5)

Applying Gauss’s divergence theorem to the second term of Eq. (2.5) leads to

a semi-discrete finite-volume discretisation for the cell centre mean value of the

conserved variables
∂

∂t
U0 = −

1

A0

M
∑

m=1

F(Um) · Lm. (2.6)

where F(Um) ·Lm are the fluxes normal to each cell face m and M is the number

of cell faces.

2.2.1 The Hancock scheme

The finite-volume scheme used here is a Godunov-type, two-stage scheme at-

tributed to Hancock by van Leer (1985). The values of the conserved variables

that are required for the fluxes at the cell interfaces are calculated using a piece-

wise linear reconstruction method that ensures that no spurious oscillations affect

the solution.
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The predictor stage is given by

Un+1/2
ij = Un

ij −
∆t

2Aij

(

M
∑

m=1

F(Um) · Lm

)

, (2.7)

where n is the time step counter, ij is the cell index, ∆t is the time step, Aij is

the cell area, Lm is the cell side vector defined as the cell side multiplied by the

outward pointing unit normal vector and M is the number of sides of the cell ij.

The fluxes at the cell interfaces are calculated using slope limited gradients based

upon neighbouring cell data as explained in Section 2.2.2.

The corrector stage provides a fully conservative solution over one time step

and is given by

Un+1
ij = Un

ij −
∆t

Aij

(

M
∑

m=1

F(UL
m,UR

m)n+1/2 · Lm

)

, (2.8)

where the values of the flux vector F(UL
m,UR

m) are solutions to local Riemann

problems at each cell interface (Section 2.2.3) calculated using slope limited gra-

dients applied to the predictor values Un+1/2
ij .

2.2.2 MUSCL Reconstruction

It is well known that second-order scheme exhibits spurious oscillations when

resolving discontinuities within the solution domain. Various methods have been

applied to numerical schemes to either dampen or remove these oscillations from

the solution. Harten et al. (1983) proposed a scheme based upon the principle

of Total Variation (TV). TV is basically defined as the sum of the differences of

the conserved variables between neighbouring cells. Total Variation Diminishing

(TVD) schemes are designed to insure that the TV for a successive time step is

less than the TV for the previous time step. This condition is preserved by using

a non-oscillatory first-order scheme where oscillations are likely to occur and a

higher order scheme is used elsewhere. This creates a scheme that is not fully

second-order and can experience difficulties in resolving shocks. Instead, in this

study, a monotonic preservation scheme is used.

Monotonic Upwind Schemes for Conservation Laws (MUSCL schemes) use the

values of the conserved variables of the cells immediately adjacent to the cell i

to calculate a slope limited gradient that ensure no spurious oscillations enter the

solution (Fig.2.2). The values of the conserved variables that the cell interfaces
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require in the predictor and corrector stages of the Hancock scheme, Eqs. (2.7)

and (2.8), are then calculated using piecewise continuous linear reconstruction

methods based upon the slope limited gradients.

Limited Slope

OvershootU(x, t)

Ui−1 Ui Ui+1
x

Figure 2.2: Piecewise continuous MUSCL reconstruction.

Therefore for cell i, the values of the conserved variables at the interfaces

(i ± 1/2) are

Ui±1/2 = Ui ±
1

2
∆xiδUi, (2.9)

where δUi are slope limited gradients across cell i and

∆xi = xi+1/2 − xi−1/2. (2.10)

The calculation of these slope limited gradients is performed to ensure that

overshoots and undershoots at the cell interfaces are minimised.

Three of the most common slope limiter functions are given below:

• minmod Limiter

G(a, b) = max[0, min(a, b)]. (2.11)

• superbee Limiter

G(a, b) = s max[0, min(2|b|, sa), min(|b|, 2sa)]. (2.12)

• van Leer Limiter

G(a, b) =
a|b| + |a|b
|a| + |b|

. (2.13)
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where

G(a, b) = G

(

Ui+1 −Ui

xi+1 − xi
,
Ui −Ui−1

xi − xi−1

)

, (2.14)

and s = sign(b). The choice of slope limiting function will have a subtle effect

on the solution obtained from the Godunov-type scheme. Therefore, a numerical

investigation is advised in order to select the most suitable slope limiting function.

A comparison of the slope limiter functions given in Eqs. (2.11)–(2.13) can be found

in Sections 2.3.1 and 2.3.2.

2.2.3 The HLL Riemann Solver

The calculation of the corrector step of the Hancock scheme, Eq. (2.8), requires

the solution to local Riemann problems at each cell interface. In this study, an

approximate Riemann solver developed by Harten, Lax and van Leer (Harten

et al., 1983) (HLL) is used. The HLL Riemann solver has been extensively tested

(Mingham and Causon, 1998; Hu et al., 2000) and is found to be accurate and

robust in practice.

Consider the simple Riemann fan consisting of three constant states separated

by the fastest and slowest acoustic waves, sL and sR respectively, between which

is a constant region as shown in Fig. 2.3.

sL

t
sR

C F B

U∗

∆t

D UL E UR A x

Figure 2.3: Simple Riemann Fan.

Integrating round the contour ABCD obtains

F(UR)∆t − U∗(sR∆t − sL∆t) − F(UL)∆t + ULsL + URsR∆t = 0. (2.15)
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Rearranging to make U∗ the subject gives

U∗ =
F(UR) − F(UL) − sLUL + sRUR

sR − sL
. (2.16)

It follows that

F(U∗) =
sRF(UL) − sLF(UR) + sLsR(UR − UL)

sR − sL
. (2.17)

For supercritical flow (sL ≥ 0) and subcritical flow (sR ≤ 0) the Riemann

fluxes are defined by the interface fluxes using the relation

F(UL,UR) =











F(UL) if sL ≥ 0

F(UL,UR) if sL < 0 < sR

F(UR) if sR ≤ 0

. (2.18)

2.2.3.1 Wave speed estimates

The wave speed estimates of the slowest and fastest travelling waves sL and sR

are defined by

sL = min
(

qL · nm −
√

φL, us −
√

φs

)

, (2.19)

sR = max
(

qR · nm +
√

φR, us +
√

φs

)

, (2.20)

where

us =
(qL + qR) · nm

2
+
√

φL −
√

φR, (2.21)

√

φs =

√
φL +

√
φR

2
−

(qL − qR) · nm

4
, (2.22)

and nm is the normalised cell side vector for face m (Toro, 1992).

Alternatively, when there exists a dry bed (see Section 2.2.6 for definition of a

dry bed), the following estimates are used (Fraccarollo and Toro, 1995)

• right dry bed:

sL = qL · nm −
√

φL, sR = qL · nm + 2
√

φL. (2.23)

• left dry bed:

sL = qR · nm − 2
√

φR, sR = qR · nm +
√

φR. (2.24)
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2.2.4 Boundary conditions

As discussed in Section 2.2.2, the calculation of the conserved variables at the cell

interfaces are dependent upon cell centre values from the neighbouring cells. This

does not present a problem for the cells in the middle of the solution domain.

However, for those cells that have interfaces on the boundary, the gradient across

the cell interface normal to the boundary requires data from cells that do not exist.

This is overcome by creating ‘ghost’ cells outside of the boundary (Fig. 2.4). The

values of the ghost cells can be specified to influence the behaviour of the fluid

within the computational domain.

Boundary

Computational cellsGhost cell

Figure 2.4: A diagram of a one-dimensional boundary.

In this section, two main boundary conditions are discussed: the transient flow

boundary condition and the solid wall boundary condition. Transient flow bound-

ary conditions are mainly used where a semi-infinite solution domain is required

and allows waves to propagate out of the solution domain without reflection. The

values of the geopotential and velocity of the ghost cells are given by (for a one-

dimensional mesh)

φ0 = φ1, φn+1 = φn,

u0 = u1, un+1 = un,
(2.25)

where the cell indices 0 and n + 1 represent the ghost cells, and the cell indices 1

and n denote the first computational cells in from the boundary.

Solid wall boundaries are applied where flow out of the solution domain is zero,

i.e., ∇q · n = 0. Simple linear interpolation gives an expression for the velocity at

the ghost cells as
φ0 = φ1, φn+1 = φn,

u0 = −u1, un+1 = −un.
(2.26)
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2.2.5 Time step calculation

For any time marching scheme, it is preferable for the value of the time step ∆t

to be as large as possible to decrease the overall computation time. However,

unless the scheme that is being used is unconditionally stable, there will exist

a limit to how large the value of ∆t can be so that the scheme remains stable.

Courant, Friedrichs and Lewy (Morton and Mayers, 1994) derived a relationship

that expresses the maximum allowable time step as a function of the spatial step,

∆x, the wave speeds and a free parameter ν.

∆t = ν min(∆tx, ∆ty), (2.27)

where

∆tx = min
i

(

∆xi

|qij | +
√

φij

)

, (2.28)

∆ty = min
j

(

∆yi

|qij | +
√

φij

)

. (2.29)

This relationship is commonly known as the CFL condition (Courant et al.,

1928, 1967) and the ν parameter is called the Courant number. For the Hancock

scheme to remain stable, it can be shown that the Courant number can take a

value in the region 0 < ν ≤ 1 although, in practice, it is better to specify a value of

ν that is less than unity to ensure against computational rounding errors. In this

study, all calculations performed using the Hancock scheme have used a Courant

number of ν = 0.9.

2.2.6 Minimum wet depth parameter

Although the numerical solver discussed in the previous sections will remain stable

as long as the CFL condition is not violated, modelling cases where wetting and

drying occurs will cause instabilities in the solver unless some form of special

treatment is used. These instabilities occur when a negative value for the mass

of water, of depth h, is calculated. Not only is this not physically possible in a

modelling sense, it also causes the solver to attempt to find the square root of

a negative number either in the calculation of the wave speeds or the time step.

In order to prevent this from occurring, a minimum wet depth parameter, δ, is

introduced where if the water depth is calculated as being less than δ a dry cell

is assumed. Typically the value of δ should be as close to zero as possible whilst
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retaining the stability of the numerical scheme. In all calculations performed in

this study a value of δ = 10−4 metres is used.

2.3 Numerical Results

The MUSCL-Hancock scheme described in Section 2.2 is applied to solve the one-

dimensional dam break problem. This is a common test of any numerical solver of

hyperbolic conservation equations as the solution can include the resolution of a

bore wave that, without proper treatment, will cause a poorly designed numerical

solver to become unstable. In addition, there is an exact solution (Wu et al., 1999)

which can be used for comparison with the computed solution.

The one-dimensional dam break is an initial value problem (IVP) consisting of

two still bodies of water of different heights. The upstream body (the reservoir)

is separated from the downstream body of water by a partition that is instanta-

neously removed at time t = 0 seconds. The two bodies of water are allowed to

interact under the force of gravity.

2.3.1 One-dimensional dam break problem: Wet bed

A solution domain of length L = 1.0 metres is discretised into 100 computational

cells (∆x = 0.01 m) with the partition located exactly half way along the flume

(x = 0.5 m). The initial water depths to the left- and right-hand side of the

partition are given by

h(x) =

{

1.0 m x ≤ L/2

0.1 m x > L/2,
, (2.30)

and the solution is iterated until time t = 0.1 seconds. The computed solutions for

the water depth and horizontal velocity using the three slope limiting functions

described in Section 2.2.2 are compared against the exact solution in Figs. 2.5 and

2.6.

The solution of the wet bed one-dimensional dam break problem takes the form

of two waves. A bore wave is formed propagating downstream as gravity acts on

the upstream body of water. The mass of water displaced from the upstream body

of water creates an upstream travelling rarefaction wave. Comparisons between

the analytical solution and the numerical solution (Figs. 2.5 and 2.6) shows that

the numerical scheme accurately solves the SWE and the discontinuity formed

by the bore wave is resolved. The choice of slope limiter function has a subtle
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Figure 2.5: One-dimensional dam break solution: solution of the water height
using the minmod limiter (top), the superbee limiter (middle) and the van Leer
limiter (bottom).
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Figure 2.6: One-dimensional dam break: solution of the horizontal velocity using
the minmod limiter (top), the superbee limiter (middle) and the van Leer limiter
(bottom).
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influence on the solution and therefore the most suitable limiter function should

be chosen for all subsequent calculations. The minmod limiter tends to smooth

out the solution where an abrupt change in gradient occurs, most notably at the

leading edge of the bore wave. The solution calculated using the superbee limiter

function is more accurate than the minmod solution. However, it does have a

tendency to create over- and under-shoots at points in the solution domain where

there is an abrupt change of gradient. This is most evident in the plot of the depth-

averaged velocity. The van Leer slope limiter function neither smooths out the

solution or creates over- and under-shoots and it appears to be the most suitable

choice of slope limiting function in this case.

2.3.2 One-dimensional dam break problem: Dry bed

The dry bed dam break problem is a difficult test of the numerical scheme’s ability

to resolve the horizontal velocity where the water is very shallow. This test is also

useful for validating a numerical scheme’s treatment of the interface between wet

and dry regions necessary for modelling wave run-up on a dry slope. The length of

the solution domain remains at L = 1.0 metres with the partition located half-way

along the flume at x = 0.5 metres. The water depths to the left- and right-hand

sides of the partition are given by

h(x) =

{

1.0m x ≤ L/2

0.0m x > L/2
. (2.31)

The computational domain is discretised into 100 computational cells giving ∆x =

0.01 metres. The solution is iterated until t = 0.07 seconds. The computed

solutions for the water depth and horizontal velocity using the three slope limiting

functions described in Section 2.2.2 are compared against the exact solutions in

Figs. 2.7 and 2.8.

The solution of the depth-averaged velocity in the dry bed dam break problem

is of most interest here (Fig. 2.8) as it shows more clearly the difference between

the analytical solution (Wu et al., 1999) and the computed solution. As gravity

acts on the upstream body of water, a wave front propagates downstream without

the formation of a bore wave. The velocity of the rarefaction wave steadily in-

creases in an almost linear fashion until it reaches its peak at the wave front where

water depth is at a minimum. The velocity drops abruptly to zero where there is

no water present. Both the minmod and superbee slope limiting functions fail to

replicate the abrupt change in gradient at the leading edge of the upstream trav-
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Figure 2.7: One-dimensional dam break with dry bed: solution of the water depth
using the minmod limiter (top), the superbee limiter (middle) and the van Leer
limiter (bottom).
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Figure 2.8: One-dimensional dam break with dry bed: solution of the horizontal
velocity using the minmod limiter (top), the superbee limiter (middle) and the
van Leer limiter (bottom).
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elling rarefaction wave. All three limiter functions fail to model the peak velocity.

However, the superbee limiter provides the best solution in this case.

In this study, all subsequent computations using the MUSCL-Hancock scheme

have been performed using the van Leer limiter. The analysis performed in this

section indicates that the van Leer limiter is superior to both the minmod and

superbee slope limiting functions. Although the superbee limiter was better at

modelling the depth-averaged velocity in the dry bed dam break problem, use of

the superbee limiter can allow negative values for the water depth to enter the

solution and the numerical scheme crashes at the next time step.

2.4 The Surface Gradient Method

The MUSCL-Hancock scheme presented in Section 2.2 solves the homogeneous

form of the SWE, i.e., the left-hand side of Eq. (2.1) that contains the terms

that model advection only (Sb + Sf = 0). The applications of this inviscid form

of the SWE are limited to flat bed shock and bore wave propagation problems.

Therefore, the inclusion of source terms that model bed topography are necessary

to ensure more realistic formulations applicable to problems such as wave run-

up and overtopping of coastal structures and tidal flows in coastal water regions.

Care needs to be taken when solving the SWE, including source terms, as a näıve

treatment of the source terms will lead to non-physical behaviour of the fluid

(Leveque, 1998).

The numerical treatment of source terms has received particular attention in

the last few years with a variety of different methods proposed. Garcia-Navarro

and Váquez-Cendón (2000) proposed an upwind scheme which utilises an extension

of the formulation of Roe’s scheme (Roe, 1981). Another approach was proposed

by Hu et al. (2000), in which the authors split the SWE into two parts: the inviscid

terms and the source terms. The scheme described in Section 2.2 was used to solve

the inviscid terms whilst a simple implicit Euler formulation was used to solve the

source terms. This method has the disadvantage of using a finite-difference based

solver for the source terms and additional constraints are placed on the time step

calculation. Leveque (1998) proposed a method that balances the source terms

and the flux gradients. The method works well for quasi-steady problems but

encounters problems modelling transcritical flow with a shock.

The Surface Gradient Method (SGM) developed by Zhou et al. (2001) provides

an accurate treatment of the source terms that requires very few alterations to

the MUSCL-Hancock scheme. The SGM uses the water surface elevation as the
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bases of the MUSCL reconstruction for the mass conservation equation and not

the water depth as described in Section 2.2.2 (Fig. 2.9). This approach ensures

that any errors that are caused by the difference between the gradient of the

water height, h, and the gradient of the bed slope, zb, do not affect the solution.

The SGM was proven to be fully conservative and satisfies both the exact-C and

Z properties (Garćıa-Navarro and Vázquez-Cendón, 2000). A numerical scheme

satisfies the exact-C property if it can replicate the exact solution to the stationary

flow problem

h ≡ H, u ≡ 0. (2.32)

The definition of the exact-Z property is that a numerical scheme provides the

exact values of a variable in the flow domain to the stationary flow case, Eq. (2.32),

when using a centred discretisation for the treatment of the source terms.

z

H(x)
h(x, t)

ζ(x, t)

zb(x)

x

Figure 2.9: Definition sketch of bed topography.

2.4.1 Data reconstruction

The SGM uses the water surface elevation as the basis for the MUSCL recon-

struction as opposed to the water depth as used in the method presented in Sec-

tion 2.2.2, hereafter referred to as the Depth Gradient Method (DGM). The water

surface elevation, ζi, is defined by (Fig. 2.9)

ζi = hi + zbi, (2.33)

where h is the water depth and zb is the bed surface elevation (Fig. 2.9). It

follows from the definition in Eq. (2.33) that the water surface elevations at the
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cell interfaces are given by

ζi±1/2 = ζi ±
1

2
∆xiδζi. (2.34)

The data reconstruction of the depth-averaged velocities are applied using the

usual method. Rearrangement of Eq. (2.33) leads to the following expression for

the reconstruction of the geopotential, φ, at the interfaces (i ± 1/2)

φi±1/2 = g

(

ζi ±
1

2
∆xiδζi − zbi±1/2

)

. (2.35)

In the case where there is no bed, i.e., zb = 0, the water surface elevation (ζ)

is simply the water depth (h) and the SGM returns to a scheme equivalent to the

DGM.

2.4.2 Discretisation of source terms

It has been shown that to maintain the conservative property of the SGM (and

also satisfy the exact-Z property), a centred discretisation of the source terms is

required (Zhou et al., 2001). For example, for the bed slope term given in Eq. (2.3)

the centred discretisation for the x-direction is

gφ
∂H

∂x
= gφi

(

Hi+1/2 − Hi−1/2

∆x

)

. (2.36)

The bed slope elevations at the cell centres are determined simply by averaging

the values at the cell interfaces

zbi =
zbi+1/2 + zbi−1/2

2
. (2.37)

2.4.3 Implementation within a Godunov-type method

The inclusion of source terms within the SWE that are being treated using the

SGM require the following alterations to the Hancock scheme predictor and cor-

rector stages, Eqs.(2.7) and (2.8)

• Predictor stage:

Un+1/2
ij = Un

ij −
∆t

2A

(

M
∑

m=1

F(Um)n · Lm − ASn
ij

)

, (2.38)
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• Corrector stage:

Un+1
ij = Un

ij −
∆t

A

(

M
∑

m=1

F(UL
m,UR

m)n+1/2 · Lm − ASn+1/2
ij

)

. (2.39)

2.4.4 Boundary conditions

In the majority of cases, when using the SGM, the boundaries can be modelled

in the same way as the DGM using the relationships discussed in Section 2.2.4.

These cases are primarily where the bed level is constant at the boundary, i.e.,

∇ · H = 0. In the case where the bed level is not constant at the boundary, the

value of the water surface elevation at the boundary is assumed to be that of the

first cell in from the boundary. Therefore, the value of φ at the boundary is given

by

φ0 = g(h1 + zb1 − zb0). (2.40)

The value of the depth-averaged velocity is taken as the same as the first cell in

from the boundary as in Section 2.2.4.

2.5 Numerical Results

The SGM described in the previous section has been validated against a number

of test cases. Tidal wave flow over a smooth bed and an irregular bed is examined

in Sections 2.5.1 and 2.5.2. The numerical scheme’s ability to resolve subcritical,

supercritical and transcritical flow with and without shocks is tested using flow

over a bump in the bed surface in Section 2.5.3. A quasi-stationary test case used

by Leveque (1998) to test his flux balancing scheme is applied to test the SGM for

very small perturbations in the water surface in Section 2.5.4. Finally, flow over

a submerged step tests the scheme’s ability to model a discontinuity in the bed

profile in Section 2.5.5.

2.5.1 Tidal wave flow

One of the principal applications for the SWE is the modelling of tidal wave flow.

Here the SGM have been used to solve a tidal flow problem over a varying bed

which Bermudez and Vázquez-Cendón (1994) used to test their upwind discreti-

sation of the source terms.

The length, L, of the solution domain is 14,000 metres, which has been dis-



2.5. Numerical Results 42

cretised using 50 computational cells (∆x = 280 metres). The bed topography is

defined using

zb = H(0) − H(x), (2.41)

where

H(x) = 50.5 −
40x

L
− 10 sin

[

π

(

4x

L
−

1

2

)]

. (2.42)

The initial and boundary conditions are

h(x, 0) = H(x), (2.43)

u(x, 0) = 0, (2.44)

and

h(0, t) = H(0) + 4 − 4 sin

[

π

(

4t

86, 400
+

1

2

)]

, (2.45)

u(L, t) = 0. (2.46)

There exists an asymptotic solution to this tidal flow problem which is was

stated by Bermudez and Vázquez-Cendón (1994) as

h(x, t) = H(x) + 4 − 4 sin

[

π

(

4t

86, 400
+

1

2

)]

, (2.47)

u(x, t) =
(x − L)π

5, 400h(x, t)
cos

[

π

(

4t

86, 400
+

1

2

)]

. (2.48)

The top graph in Fig. 2.10 shows a comparison between the numerical water

surface and the analytical water surface at time, t = 7552.13 seconds, where the

tidal wave has risen to a water surface elevation of 62.68 metres. There are very

few discrepancies between the analytical water surface solution and the numerical

water surface solution. The bottom graph in Fig. 2.10 shows a comparison of

the depth-averaged velocity between the analytical and numerical results for the

same time period. The SGM has slightly underestimated the velocity across the

solution domain.

2.5.2 Tidal wave flow over an irregular bed

A further test using the tidal wave conditions defined in Eqs.(2.43)–(2.45) was

proposed by a workshop on dam break simulation (Goutal and Maurel, 1997) and

was also used by Vázquez-Cendón (1999) to test their upwind scheme over an
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Figure 2.10: Tidal wave flow: comparisons between the numerical results and the
analytical solutions at time t = 7552.13 seconds. Water surface elevation (top)
and depth-averaged velocity (bottom).
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irregular bed. The bed topography is defined in Table. 2.1 and shown in Fig. 2.11.

The initial and boundary conditions are similar to those given in Eqs. (2.43) and

(2.45) but with the following alterations.

H(0) = 16 m, L = 1500 m, H(x) = H(0) − zb(x). (2.49)

Table 2.1: Tidal flow over an irregular bed: Bed elevation

x (m) 0 50 100 50 250 300 350 400 425 435
zb (m) 0.0 0.0 2.5 5.0 5.0 3.0 5.0 5.0 7.5 8.0
x (m) 450 475 500 505 530 550 565 575 600 650
zb (m) 9.0 9.0 9.1 9.0 9.0 6.0 5.5 5.5 5.0 4.0
x (m) 700 750 800 820 900 950 1000 1500
zb (m) 3.0 3.0 2.3 2.0 1.2 0.4 0.0 0.0

The solution to this problem can be found by using Eqs. (2.47) and (2.48).

The solutions to the tidal flow problem over an irregular bed are depicted in

Fig. 2.11 for both the water surface elevation and the velocity at time, t = 10, 800

seconds, and the velocity at time, t = 32, 400 seconds, in Fig. 2.12. The SGM

shows excellent agreement between the numerical and analytical solutions for both

the water height and velocity and confirms that the SGM is an accurate treatment

of the source terms for tidal flow.

2.5.3 Steady flow over a bump

Another validation test for treatment of source terms in the SWE was used by

Vázquez-Cendón (1999) to test their upwind scheme. The problem consists of a

one-dimensional channel with a bump in the bed topography. The flow is sub-

critical (Fr < 1) in the region downstream of the bump until the bed elevation

increases, causing the flow to accelerate reaching critical conditions (Fr = 1) at

the top of the bump. It is at the point where the bed surface is a maximum that

transcritical flow can only occur (Alcrudo and Benkhaldoun, 2001; Chow, 1959).

The flow downstream of the bump is supercritical (Fr > 1), unless boundary

conditions are used to force the flow to become subcritical.

For this test case, a flume of 25 metres in length is used with the bed surface

elevation defined by

zb(x) =

{

0.2 − 0.05(x − 10)2 if 8 < x < 12

0 otherwise
. (2.50)
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Figure 2.11: Tidal wave flow over an irregular bed: comparisons between the
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Figure 2.12: Tidal wave flow over an irregular bed: Comparison of the numerical
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The SGM is iterated until global convergence between successive time steps is

reached. This condition is met when the global relative error, Rerr, satisfies

Rerr =

√

√

√

√

∑

i

(

hn
i − hn−1

i

hn
i

)2

< 1 × 10−6. (2.51)

2.5.3.1 Transcritical flow without a shock

Transcritical flow without a shock is achieved by imposing a discharge per unit

width of q = 1.53 m2s−1 at the inflow boundary, and a transient flow boundary

condition, Eq. (2.25), was used at the outflow boundary. The flume was discretised

using 100 computational cells giving a spatial step of ∆x = 0.25 metres. A

comparison between the numerical solution and the analytical solution given by

Goutal and Maurel (1997) is made in Fig. 2.13.

2.5.3.2 Transcritical flow with a shock

Transcritical flow with a shock is achieved by imposing a discharge per unit width

of q = hu = 0.18 m2s−1 at the inflow boundary, and a depth of h = 0.33 metres at

the outflow boundary. The velocity at the outflow boundary remains consistent

with that of Eq. (2.25). A comparison between the numerical solution and the
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analytical solution is given in Fig. 2.14.

2.5.3.3 Subcritical flow

Subcritical flow is created by imposing a discharge per unit width of q = 4.42 m2s−1

at the inflow boundary and water depth of h = 2.0 metres at the outflow bound-

ary. A comparison between the numerical solution and the analytical solution is

given in Fig.2.15.

2.5.4 Quasi-stationary case

Leveque (1998) chose a quasi-stationary test case to test his flux balancing scheme

on computations involving small perturbations in the water surface. The problem

consists of a channel 1.0 metres in length with a bed topography defined by

zb(x) =

{

0.25{cos[10π(x − 1/2)] + 1} if |x − 1/2| < 1/10

0 otherwise
, (2.52)

and H(0) = 1.0 metres. For this test case, Leveque specified the acceleration due

to gravity of g = 1.0 ms−2. The initial conditions for the water surface elevation

consists of a ‘top-hat’ function defined by

ζ(x, 0) =

{

H(0) + ε if 0.1 < x < 0.2

H(0) otherwise
, (2.53)

where ε = 0.2 is the height of the initial top-hat function and u = 0 ms−1.

At time t = 0 seconds, gravity acts on the top-hat function creating two left

and right travelling waves, travelling at celerity (±
√

gd). The small perturbations

present in the water surface are a demanding test for any treatment of the SWE

along with bed source terms. Fig. 2.16 shows that the SGM compares favourably

with Leveque’s treatment of the source terms.

2.5.5 Surge crossing a step

The resolution of a surge crossing a step has been used by Hu et al. (2000) to test

their split scheme’s ability to model discontinuities in the bed slope. A channel of

length, L = 10, 000 metres, has a bed slope given by

zb(x) =

{

0 if x ≤ 5000

2 otherwise
. (2.54)



2.5. Numerical Results 48

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  5  10  15  20  25

Analytical solution
Numerical solution

Bed

ζ
(m

)

x (m)

Figure 2.13: Steady transcritical flow over a bump without a shock: comparison
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Figure 2.15: Subcritical flow over a bump: comparison of the numerical and ana-
lytical solution for a steady state solution.

Initially, the water is at rest and the water surface elevation is 5 metres. A

supercritical flow condition is imposed at the left-hand boundary in the form of

a surge wave with a depth of 10 metres. A solid wall condition (Eq. 2.26) is

employed at the right-hand boundary. The incident velocity, uI , can be calculated

from the following equation (Chow, 1959)

uI =
c1(d1 − d2)

d1
, (2.55)

where d1 and d2 represent the depths of the surge wave and initial water depth

respectively and

c1 =

√

gd1(d1 + d2)

2d2
. (2.56)

When the surge wave hits the step in the bed it creates two new waves, one

travelling upstream with a water depth of h′
1 and velocity u′

1, and the other down-

stream with a water depth of h′
2 and velocity u′

2. The analytical solution of the
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two new surges can be calculated using the following equations (Chow, 1959)

(u1 − u′
1)

2 = (h1 − h′
1)

2 (h1 + h′
1)g

2h1h′
1

, (2.57)

(u2 − u′
2)

2 = (h2 − h′
2)

2 (h2 + h′
2)g

2h2h′
2

, (2.58)

h′
1 = h′

2 + 2 +
(u′

2 − u′
1)

2

2g
, (2.59)

h′
2 =

u′
1h

′
1

u′
2

. (2.60)

Fig 2.17 shows a comparison of the numerical water surface and velocity against

the analytical solutions. There is excellent agreement between the numerical and

analytical results indicating that the SGM can be used to model a discontinuous

bed topography or near vertical bed topography.
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2.6 Chapter Summary

The non-linear Shallow Water Equations (SWE) were presented and an overview

of the finite-volume method was included in Section 2.2. A Godunov-type high-

resolution finite-volume scheme that is used to solve the homogeneous form of

the SWE is also presented (Section 2.2.1). The Hancock scheme uses a linear

reconstruction technique to obtain values of the conserved variables at the cell

interfaces. The values at the cell interfaces are calculated using slope limited

gradients to eliminate spurious oscillations. An approximate Riemann solver is

used to calculate the solution to local Riemann problems that are required for

the Godunov-type solver. The Surface Gradient Method (SGM), a method for

the treatment of the source terms for the SWE in a finite-volume method, is

given in Section 2.4. The SGM uses the water surface elevation as opposed to the

geopotential as a basis for the monotonic reconstruction for the mass conservation

equation. This treatment ensures that any differences in the solution of the inviscid

terms and the source terms do not affect the solution.

The numerical scheme has been tested over a range of well known test prob-

lems. Firstly, the inviscid solver was tested for a one-dimensional dam break

problem with both a wet, and dry bed and for different choices of slope limiting

functions. The implementation of the SGM within the MUSCL-Hancock scheme

has been tested for tidal flow over smooth and irregular bed topography; subcrit-

ical, supercritical and transcritical flow over a bump; small perturbation flow and

surge wave crossing a step. In all test cases performed, the numerical scheme is

shown to be accurate, robust and efficient in practice.

Chapter 3 uses the numerical scheme described in this chapter to model a series

of experiments examining wave run-up and, in particular, violent overtopping of

a seawall.



Chapter 3

Shallow Water Modelling of Wave

Overtopping

The shallow water flow solver presented in the previous chapter has been validated

against standard test cases with well known analytical solutions. In order to be

able to apply a flow solver to provide guidance on the design of coastal struc-

tures, it is important that the accuracy and limitations of the solver are known.

Comparisons between real world observations and numerical models are difficult

to make because the numerical models require wave height data over the whole

of the solution domain. Instead it is much more practical to make comparisons

with wave flume experiments and the empirical models developed using field and

experimental observations.

At present, the most widely used method for the prediction of wave overtopping

is the application of empirical models (Reis et al., 2005). Measurements relating to

the factors affecting the volume of water that overtops a seawall are collected from

wave flume experiments and field observations. These measurements are then used

to calibrate an empirical model by utilising curve fitting methods to provide an

equation for the given physical configuration of the wave flume/seawall. Empirical

methods provide a useful method for estimating the discharge volumes from values

of the incident wave parameters.

This chapter discusses the analysis of wave overtopping using statistical meth-

ods and the calibration of empirical overtopping formulae. Section 3.1 begins by

defining the wave statistics used to describe the type of wave attack on coastal

structures and the probability distribution of water waves. The definitions of

wave run-up and overtopping are given in Section 3.1.3 along with formulae for

dimensionless values and the basic empirical model. Violent wave overtopping is

54
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discussed in Section 3.2 and the shallow water model presented in Chapter 2 is

applied to model violent wave overtopping. The results are compared against the

experimental observations and empirical formulae in Section 3.5.

3.1 Wave and Overtopping Statistics

For the purpose of analysis, ocean waves can be considered to be a random pro-

cess. Therefore, analysis of wave data can be conducted using statistical methods.

The three main statistical methods used are the analysis of mean values, and

the calculation of probability density functions (PDFs) and spectral density func-

tions. Mean values provide a single measure of the wave conditions which are used

for comparison between observations and also for derivation of empirical formu-

lae. Probability density functions are used to give a probability that a random

variable, usually the wave height, will not exceed a given value. PDFs therefore

provide a more complete picture of the wave conditions than the mean values.

Spectral density functions use Fourier analysis to give an energy distribution in

the frequency domain.

3.1.1 Significant wave height and mean wave period

When observing the motion of waves, it is natural to use the wave height as a

measure to describe the wave conditions. A visual estimation of the average wave

height will tend to only use the larger waves in the estimation and disregard the

smaller waves. The omission of the smaller waves in the estimation does not

invalidate the average wave height as a measure of the wave conditions, rather by

only taking into account the larger more significant waves, the visual estimation

of the average wave heights can be referred to as the significant wave height.

Therefore the definition of the significant wave height, denoted by Hs, is given by

Sverdrup (1947) as the average of the top 1/3 wave heights in a wave record:

Hs =
3

n

n/3
∑

i=1

Hi, (3.1)

where Hi are the wave heights ordered in descending order and n is the number of

waves in the sequence. The other main wave statistic that describes the incident
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wave attack is the mean wave period denoted by Tm

Tm =
1

n

n
∑

i=1

Ti, (3.2)

where Ti is the wave period.

3.1.2 Rayleigh Wave Height Distribution

Longuet-Higgins (1952) showed that, based upon the linear model of waves with

a narrow energy spectrum, wave heights in deep water should follow the Rayleigh

distribution (Battjes and Groenendijk, 2000). Goda and Kudaka (2005) recently

demonstrated that the applicability of the Rayleigh distribution is not dependent

upon the shape of the energy spectrum and that a narrow energy spectrum is not

required. The probability of non-exceedence (a random wave having a height less

than H) given by the Rayleigh distribution is

P (H < H) = 1 − exp

[

−
(

H

Hrms

)2
]

, (3.3)

where H is a random variable, Hrms = Hs/1.416 is the root mean square (rms) of

the wave heights.

Comparison between the observed probability distribution and the theoretical

Rayleigh distribution corresponding with the observed Hs will indicate whether

the waves that are being generated either in a wave tank or by a numerical model

are consistent with those that occur in the real world. The observed probability

distribution can be calculated by using

P (H < H) = 1 −
i

n + 1
(3.4)

where i is the ith largest recorded wave height and n is the number of waves

recorded.

3.1.3 Wave run-up and overtopping

When non-breaking waves propagate towards and interact with sloping structures,

the wave will run-up the face of the slope until either the wave loses energy and

is reflected seaward, or the wave reaches the top of the structure and continues

to flow inland. The vertical distance that the wave travels up a slope from the
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SWL is defined as run-up and is denoted here by R (Fig. 3.1). If the wave run-up

distance is higher then that of the crest freeboard (the vertical distance between

the SWL and the top of the structure), Rc, the water will overtop the structure in

a continuous sheet of water. Overtopping of this kind is known as ‘green water’

overtopping Besley (1999).

R
Rc

SWL

Figure 3.1: Definitions of run-up, R, and crest freeboard, Rc.

Overtopping is measured as the mean volume of water overtopping a structure

per second per metre of seawall and is denoted by Q. For comparisons between

different wave conditions and bathymetry, dimensionless values of the overtopping

discharge volumes and freeboard are calculated. For example, Owen (1980) used

the following relationships to determine dimensionless values for his model

Q∗ =
Q

TmgHs
(3.5)

R∗ =
Rc

Tm

√
gHs

(3.6)

where Q∗ and R∗ denote the dimensionless values of the overtopping and freeboard

respectively for non-impacting waves.

In general, empirical models that describe the relationship between dimension-

less overtopping discharge and the dimensionless crest freeboard take the form of

an exponential equation

Q∗ = A exp(−BR∗) (3.7)

where A and B are dimensionless empirical coefficients. The values of the empirical

coefficients are determined by utilising a maximum likelihood approach.

3.2 Violent Wave Overtopping

Violent wave overtopping occurs when waves break upon steep sloping structures

which causes pressures and velocities much larger than normally associated under
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gravity (Peregrine, 2003). This phenomena can be seen in Fig. 3.2 that shows

three frames of a video recording of a wave flume experiment.

Figure 3.2: Video images of a breaking wave impacting on a structure.

The image on the left shows a wave that has propagated up a sloping beach and

has formed a plunging breaker that is about to impact on the vertical structure

to the right of the image. The centre image shows the breaking wave impacting

on the structure. The combination of the air trapped by the breaking wave and

the force of the wave impacting against the structure causes the violent explosion

of water in the vertical direction as seen in the image on the right. In real life

situations, the jet of water that is propelled into the air is often blown landwards

by the force of the wind.

Due to the simplifying assumptions, the SWE and other depth-averaged models

cannot model the multiply connected region of the air trapped by the breaking

waves, but as discussed previously, the numerical models that can model such

phenomena are very computationally expensive. The SWE can, however, represent

the breaking waves as discontinuities due to the hyperbolic nature of the system,

and thus can provide a model of the wave breaking against a structure.

3.2.1 Previous Work on Violent Wave Overtopping

Water wave overtopping had been studied extensively over the past 30 years.

Goda et al. (1975), Owen (1982) and Franco et al. (1994) all present data and

guidance on overtopping volumes for a variety of sloping and vertical structures.

Owen and Franco et al. focus primarily upon cases where waves do not break

(pulsating or non-impulsive conditions). While Goda’s data includes violent or

impulsive conditions, these are not treated separately. Besley et al. (1998) and

Pearson et al. (2001) have used observations from either physical models or field

data to gain greater understanding of violent, impulsive overtopping. Guidance

on mean and wave-by-wave overtopping volumes under violent conditions is now

established, but for simple structures and standard sea spectra only.
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Violent overtopping events are difficult to model using current numerical meth-

ods. Ideally, the use of the Navier-Stokes equations would provide a good model

of overtopping events. However, the computational resources needed to solve a

Navier-Stokes formulation would negate the advantages of using a mathematical

model over small-scale physical models. Until computing power has advanced suf-

ficiently to enable the Navier-Stokes equations to be solved within a practical time

frame, alternative methods are required.

The Shallow Water Equations (SWE) given in Eqs. (2.1)–(2.3) provide a good

model of water flow under certain conditions. They represent a depth-averaged

formulation of the Navier-Stokes equations and as a result, vertical velocity is

neglected. The SWE in theory may not be suitable as a basis for a numerical

model for violent wave overtopping where vertical velocities are a major feature

(Section 3.2). However, it has been shown that solvers exists, such as the one

discussed in Chapter 2, that are easy to implement and computationally efficient.

Therefore, it is necessary to establish whether the SWE are applicable for mod-

elling overtopping events.

Existing numerical models of overtopping based on the shallow water equations

include HR Wallingford’s ANENOME OTT model developed by Dodd (1998) and

ODIFLOCS developed by van Gent (1994, 1995) at Delft Hydraulics. ANENOME

OTT and ODIFLOCS have been used to model run-up and overtopping on mild

sloping structures (Richardson et al., 2002; Clarke and Damgaard, 2002). So far, to

the author’s knowledge, neither model has been used to model overtopping of near

vertical structures. Richardson et al. (2001) and Shiach et al. (2004) have both

examined the use of the SWE based AMAZON model for violent wave overtopping

resulting from a range of impulsive wave conditions. Most of the analysis in this

chapter is taken from Shiach et al. (2004) (Appendix D).

3.2.2 The h∗ Parameter

When examining violent wave overtopping, it is important to be able to quantify

the impacting wave interaction on the structure. Allsop et al. (1995) developed

a parameter, h∗, that gives a measure to the type of wave that dominates at a

seawall. The value that h∗ takes determines whether it is the inshore propagating

incident waves or the reflected waves that dominate at the structure. Of course,

for violent overtopping events to occur, incident waves must dominate to enable
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waves to break against the structure. The h∗ parameter is calculated using

h∗ =
dtoe

Hs

(

2πh

gT 2
m

)

, (3.8)

where dtoe is the water depth measured at the toe of the structure, Hs is the

significant wave height defined in Eq. (3.1), g = 9.81 ms−2 is the acceleration

due to gravity and Tm is the mean wave period defined in Eq. (3.2). Allsop

et al. (1995) showed that for values of h∗ < 0.3 incident waves dominate, and for

values of h∗ ≥ 0.3 it is the reflected waves that dominate. Therefore violent wave

overtopping is likely to occur when h∗ < 0.3.

3.2.3 Besley Formula

Besley (1999) used the h∗ parameter in his model to derive empirical formulae

that provide predictions of the dimensionless discharges and the proportion of

waves that overtop a vertical structure. For conditions conducive to violent wave

overtopping, the dimensionless discharge and percentage of waves that overtop

according to the Besley model are:

Qh =

(

Q
√

gH3
s

)

/h∗2, (3.9)

Rh =

(

Rc

Hs

)

h∗, (3.10)

Now/Nw = 0.031R−0.99
h , (3.11)

where Qh and Rh are dimensionless values for the discharge and crest freeboard

for impacting waves and vertical seawalls, Now and Nw are the number of waves

that cause overtopping of the seawall and the number of waves that are recorded

over the observed time scale respectively.

3.3 The Edinburgh Wave Flume Experiments

A series of experiments was carried out by Jon Pearson and Tom Bruce at Edin-

burgh University to study violent wave overtopping as part of the VOWS project

(Violent Overtopping by Waves at Seawalls). These experiments have been mod-

elled using the shallow-water equations in Shiach et al. (2004).

The Edinburgh wave flume experiments consisted of a wave flume 20 metres

in length by 0.4 metres wide. An absorbing flap-type wave generator was located
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at one end of the flume (Fig. 3.3). The operating water depth was 0.7 metres,

which provided intermediate depth conditions at the wave generator. The basic

bathymetry of the wave flume consisted of a 1:10 sloping beach on which was

placed a 10:1 battered wall, so that the water depth at the toe of the wall was

0.09 metres. The crest freeboard was 0.15 metres.
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Figure 3.3: Edinburgh wave flume: side elevation.

Eight depth gauges that record water surface elevation were placed at locations

1.0, 2.0, 3.0, 4.25, 5.5, 6.75, 8.0 and 11.21 metres from the battered wall and record

at a rate of 100 Hz (Fig. 3.4). The wave generator produced waves sampled from

the JONSWAP spectrum with a peak enhancement parameter of γ = 3.3. 15

runs of the experiment were carried out for 1000 waves over 1024 seconds and 6

runs were carried out over a reduced time of 160 seconds. All of the runs of the

experiment were carried out for h∗ values between 0.03 and 0.1, so that impacting

waves would dominate at the structure and violent wave overtopping would occur.

wave

generator

SWL = 0.7

7.47

7.045

wave gauges

0.186

1:10

10:1

overtopping

h = 0.09

detector
Rc = 0.15

Figure 3.4: Edinburgh wave flume: experimental setup.

Table 3.1 contains the significant wave heights (Hs) measured at the toe of the

battered wall, the mean wave period (Tm), the h∗ parameter and the dimensionless

freeboard (Rh) for the 15 runs of the experiment.
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Table 3.1: Edinburgh wave flume experiment parameters

Run Hs
† Tm

† h∗ Rh

1 0.063 1.23 0.0544 0.1296
2 0.074 1.27 0.0435 0.0881
3 0.069 1.25 0.0481 0.1046
4 0.059 1.25 0.0563 0.1431
5 0.062 1.25 0.0536 0.1296
6 0.071 1.50 0.0325 0.0686
7 0.078 1.48 0.0304 0.0584
8 0.063 1.52 0.0356 0.0849
9 0.050 1.52 0.0449 0.1347
10 0.075 1.50 0.0307 0.0615
11 0.062 0.97 0.0889 0.2152
12 0.059 0.95 0.0974 0.2477
13 0.066 0.98 0.0818 0.1860
14 0.068 1.00 0.0763 0.1683
15 0.064 0.98 0.0844 0.1978

† Measured at the toe of the battered wall.

3.4 Numerical Modelling of Violent Wave Over-

topping

The shallow water flow solver presented in Chapter 2 has been applied to model

the violent wave overtopping observed in the Edinburgh experiments. A reduced

solution domain starting at 2.0 metres away from the battered wall was used

to minimise the discrepancies between the physical waves and the shallow water

model of wave propagation in intermediate depth water. The total length of the

numerical flume was 2.1 metres which was discretised into 100 computational cells

(∆x = 0.021 metres). The water surface elevation recorded at the gauge placed

2.0 metres away from the battered wall served as the boundary condition for the

water depth at the left-hand boundary, whilst the velocity was assumed to be the

same as that of the first computational cell in from the left-hand boundary. This

boundary condition takes into account both incident waves and waves reflecting

from the structure. A study carried out by Richardson et al. (2001) showed that

this boundary condition provides values of the water surface and velocity that

are 99% and 85% accurate, respectively, when compared to a moving boundary

model. A transmissive boundary condition was used at the right-hand boundary
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to allow water to pass out of the solution domain.

Data was collected from two points within the solution domain. At x = 1.0

metres, the water surface elevation was recorded which corresponds with the gauge

placed 1.0 metres from the battered wall. At x = 2.03 metres, the overtopping

discharge Q was calculated from the water depth and positive velocity by using

the equation

Q = hu∆t. (3.12)

An overtopping event is considered to have occurred if a positive water depth

is recorded at the gauge placed at the top of the battered wall and the velocity

recorded at the same gauge is landward.

3.5 Results

A plot of the numerical and experimental water surface at the gauge placed 1.0

metres from the battered wall over two separate time intervals can be seen in

Fig. 3.5. A comparison between the water surface elevation for the physical model

and the numerical model suggests that the numerical surface over-predicts the

wave heights at the gauge placed 1.0 metres from the battered wall. This is

because the numerical model is being applied to model wave propagation outside

of the range of applicability for the SWE (d/L > 1/20). Therefore, it causes the

waves to shoal prematurely. As the wave steepens, the wave height increases, thus

over-predicting the height of the wave crests. The crests of the numerical waves

occur at the same time as the physical waves.

Plots showing the cumulative overtopping discharge, q, over time 0–1200 sec-

onds for all 15 runs of the numerical model and the physical model can be seen

in Figs. 3.6–3.10. An overtopping event can be identified by a steep upward turn

in the discharge plot. Runs 3, 13 and 14 show agreement to within 12% between

the numerical and physical discharge. However, runs 7, 9 and 10 show that the

agreement is poor for these cases. For all 15 runs of the experiment, the numer-

ical discharge replicates some of the major overtopping events demonstrating an

advantage that numerical models have over empirical formulae in that they may

be used to model individual overtopping events.

The individual wave heights observed from both the Edinburgh experiments

and the numerical model have been compared to the corresponding Rayleigh prob-

ability function in Figs. 3.11 and 3.12 for selected runs. The comparisons have
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Figure 3.5: Numerical simulation of the Edinburgh wave flume experiments: Com-
parison of the experimental (solid line) and the numerical (dotted line) water
surface at gauge placed 1.0 metres from the battered wall over time intervals of
t = [10, 30] (a) and t = [100, 120] (b).
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Figure 3.6: Numerical modelling of the Edinburgh experiments: comparison of the
numerical discharge (dotted line) against the experimental discharge (solid line)
for runs 1 – 3.
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Figure 3.7: Numerical modelling of the Edinburgh experiments: comparison of the
numerical discharge (dotted line) against the experimental discharge (solid line)
for runs 4 – 6.
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Figure 3.8: Numerical modelling of the Edinburgh experiments: comparison of the
numerical discharge (dotted line) against the experimental discharge (solid line)
for runs 7 – 9.
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Figure 3.9: Numerical modelling of the Edinburgh experiments: comparison of the
numerical discharge (dotted line) against the experimental discharge (solid line)
for runs 10 – 12.
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Figure 3.10: Numerical modelling of the Edinburgh experiments: comparison of
the numerical discharge (dotted line) against the experimental discharge (solid
line) for runs 13 – 15.
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Figure 3.11: Numerical modelling of the Edinburgh experiments: experimental
wave heights (+) compared to the Rayleigh distribution (dashed line) for runs 4,
6 and 9.
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Figure 3.12: Numerical modelling of the Edinburgh experiments: numerical wave
heights (+) compared to the Rayleigh distribution (dashed line) for runs 4, 6 and
9.
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Table 3.2: Edinburgh wave flume experiments: experimental observations

Run h∗ Q Qh Now Nw Now/Nw(%)
1 0.0544 1.26E-05 0.0502 175 863 20
2 0.0435 3.25E-05 0.2033 479 888 54
3 0.0481 2.38E-05 0.1216 299 900 33
4 0.0563 2.68E-06 0.0100 39 850 5
5 0.0536 8.45E-06 0.0349 132 898 15
6 0.0325 2.26E-05 0.2531 329 719 46
7 0.0304 3.88E-05 0.4971 535 712 75
8 0.0356 1.19E-05 0.1104 173 682 25
9 0.0449 3.61E-06 0.0212 76 658 12
10 0.0307 2.74E-05 0.3431 410 719 57
11 0.0889 1.37E-05 0.0205 204 1000 20
12 0.0974 7.94E-06 0.0099 125 1017 12
13 0.0818 2.35E-05 0.0415 394 985 40
14 0.0763 2.84E-05 0.0576 357 1000 36
15 0.0844 1.89E-05 0.0313 278 985 28

Table 3.3: Edinburgh wave flume experiments: numerical results

Run h∗ Q Qh Now Nw Now/Nw(%)
1 0.0544 1.09E-05 0.0436 84 1037 8
2 0.0435 5.02E-05 0.3142 290 967 30
3 0.0481 2.70E-05 0.1379 196 1017 19
4 0.0563 1.24E-06 0.0046 13 1038 1
5 0.0536 6.19E-06 0.0255 44 1042 4
6 0.0325 2.40E-05 0.2693 203 854 24
7 0.0304 8.83E-05 1.1317 541 847 64
8 0.0356 9.49E-06 0.0883 61 861 7
9 0.0449 2.17E-06 0.0127 14 849 2
10 0.0307 4.87E-05 0.6088 292 864 34
11 0.0889 1.11E-05 0.0167 89 1252 7
12 0.0974 6.91E-06 0.0086 47 1239 4
13 0.0818 2.61E-05 0.0460 150 1233 12
14 0.0763 2.63E-05 0.0534 214 1225 17
15 0.0844 1.63E-05 0.0270 121 1239 10
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been plotted on Rayleigh distributed axes so that the Rayleigh distribution ap-

pears to be a straight line. In all cases, the distribution of the measured wave

heights closely follow that of the Rayleigh distribution for the larger waves. As

the wave height decreases, i.e., for the less significant waves, the wave heights for

both the experiment and numerical model deviate from the Rayleigh distribution.

This analysis shows that the waves that were recorded 2.0 metres from the seawall

were similar to those expected in a typical sea state.

The values of the h∗ parameter, dimensionless discharges and the number of

waves overtopped observed in the Edinburgh experiments, and calculated using

the numerical model are presented in Tables 3.2 and 3.3 respectively. The dimen-

sionless discharge volumes collected from both the wave flume experiments and

the numerical model are compared to the empirical model of Besley in Fig. 3.13.

The values of Hs from the experimental observations were used in the calculation

of Qh for the numerical discharges. It can be seen that both the experimental and

numerical values follow the general Besley curve for Rh in the range [0.05,0.25].

For values of 0.15 ≤ Rh ≤ 0.25, there is excellent agreement between the com-

puted values, the experimental values and the empirical model. For the values of

the crest freeboard, Rh ≤ 0.1, the model over-predicts the dimensionless discharge

volumes by up to a factor of 3. The Besley model over-predicts the experimental

discharges in this range. It was noted in Besley (1999) that overtopping predictions

using empirically derived models of wave overtopping should only be considered

accurate to within a factor of 3 over the actual overtopping rate. Values of the

dimensionless freeboard, Rh, and the ratio of overtopping waves, Now/Nw, for

the Edinburgh experiments and the numerical model are compared to the Besley

curve in Fig. 3.14. For all 15 runs of the experiment modelled, the numerical

model under-predicts the number of overtopping waves. The numerical prediction

improves slightly where the waves are not severely impacting (h∗ > 0.15).

The absolute relative errors between the numerical and experimental values

of significant wave heights and dimensionless discharge volumes are plotted in

Fig. 3.15. The absolute relative error is calculated here using

Absolute relative error (%) = 100

(

|fexp − fnum|
fexp

)

, (3.13)

where fexp and fnum are the experimental and numerical values respectively. For

values of h∗ > 0.075, there is good agreement between the numerical and experi-

mental dimensionless discharges with the numerical model providing overtopping

predictions to within 20% of the experimental dimensionless discharges. For values
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Figure 3.13: Edinburgh wave flume experiments: values of the experimental
and numerical dimensionless discharge (Qh) plotted against the Besley empirical
model.

of h∗ < 0.06, there is a marked decrease in accuracy in the numerical predictions

of both the overtopping dimensionless discharges and wave heights. There were

no runs of the Edinburgh experiments conducted for values of h∗ = [0.055, 0.075].
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3.6 Chapter Summary

This chapter was concerned with the application of the shallow water flow solver

presented in Chapter 2 to model violent wave overtopping. The wave statistics

that are commonly used to analyse the propagation of water waves, the significant

wave heights (Hs) and mean wave periods (Tm), are defined in Section 3.1.1. The

Rayleigh distribution that gives the probability of non-exceedence of wave heights

in deep water is presented in Section 3.1.2. A description of the basic empirical

model for the prediction of overtopping volumes is given in Section 3.1.3. The

physical phenomenon of violent wave overtopping is explained in Section 3.2 along

with a review of previous studies. The h∗ parameter that determines whether

impacting of impulsive waves dominate at the seawall is defined in Eq. (3.8) and

the empirical model of Besley that gives overtopping volumes of violent wave

interaction with vertical seawalls is explained (Section 3.2.3).

A set of experiments that was conducted to examine violent wave overtopping

is presented in Section 3.3, and was modelled using the shallow water flow solver

in Section 3.4. An analysis of the wave heights showed that the numerical waves

were larger than the experimental waves measured at a depth gauge located 1.0

metres from the seawall. This over-prediction can be attributed to the absence of

terms that model dispersion in the governing equations, preventing the modelling

of wave propagation in intermediate depth water. An analysis of the overtopping

predictions has been conducted using both a comparison of the individual overtop-

ping events and mean values. It was found that the numerical model was able to

replicate some of the major overtopping events at the same time as they occurred

in the experiments. The experimental and numerical observations were compared

to the empirical model derived by Besley. It was found that for less impacting

waves (h∗ > 0.06) the shallow water model gave wave height and overtopping

predictions to within 20% of the experimental values. For more impacting waves

there is a notable decrease in accuracy.

The next chapter examines a form of the Boussinesq equations which are a

depth-averaged system of governing equations with terms that model dispersion

allowing for intermediate depth water to be modelled.



Chapter 4

The Boussinesq Equations

Peregrine (1967) derived a set of flow equations for small amplitude waves over

varying depth based upon the work of French mathematician Joseph Boussinesq

(1842–1929). Now known as the standard Boussinesq equations, this system used

the water surface elevation above the still water level (SWL) and the horizon-

tal depth-averaged velocity as the conserved variables. The standard Boussinesq

equations are:

∂η

∂t
+

∂

∂x
[(d + η)u] = 0 (4.1)

∂u

∂t
+ g

∂η

∂x
+ u

∂u

∂x
+

d2

6

∂3u

∂x2∂t
−

d

2

∂2

∂x2

(

d
∂u

∂t

)

= 0 (4.2)

where η is the water surface elevation above the SWL, u is the depth-averaged

velocity and d is the water depth (the distance between the SWL and the bed

surface). Peregrine used his formulation to model the propagation of a solitary

wave on a beach of uniform slope.

Peregrine’s work, along with advances in digital computing, has since sparked

a renewed interest in Boussinesq-type models. Although the standard Boussinesq

equations include terms that model dispersion, the range of applicability of these

equations are not significantly greater than the shallow water equations (SWE),

i.e., that the depth to wavelength ratio has to be less than 1/20. Witting (1984),

Murray (1989), Madsen et al. (1991) and Nwogu (1993) have all extended the

standard Boussinesq equations to be able to model flow in intermediate depth

water (0 < d/L ≤ 1/2). Witting (1984) expressed the exact depth-integrated

momentum equations in terms of the velocity at the surface using coefficients of a

fourth-order Taylor series expansion to obtain the best dispersion characteristics.

However, Witting’s equations are only applicable for propagation over a constant

77
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depth and a two-dimensional formulation cannot easily be derived. Murray (1989)

and Madsen et al. (1991) both introduced additional third-order terms into the

standard Boussinesq equations to obtain a system of equations with a dispersion

relation closely relating to that obtained by linear theory.

Nwogu (1993) used a different approach to extend the range of the standard

Boussinesq equations. By assuming a quadratic velocity profile in the vertical

direction, Nwogu derived a system of equations where the horizontal velocity is

calculated at an arbitrary depth. This leads to a formulation where the dispersion

characteristics of the equations are dependent upon this depth of the assumed

velocity. By minimising the error between linear wave theory and that of the

governing equations, the optimum depth for where the velocity is determined can

be found (Section 4.1.1). This chapter presents a numerical solution method for

the extended Boussinesq equations of Nwogu.

This chapter is structured as follows: the extended Boussinesq equations of

Nwogu are presented and their dispersion properties compared with those of

other Boussinesq models as well as linear theory (Section 4.1). The finite differ-

ence method is introduced (Section 4.2) and the numerical scheme used to solve

Nwogu’s equation is presented (Section 4.3). Methods of treating the boundaries

and wave generation are discussed (Sections 4.4 and 4.5) before the numerical

solver is validated against a number of common test cases (Section 4.7).

4.1 Nwogu’s Boussinesq Equation system

Nwogu’s extended Boussinesq equation system is given by

∂η

∂t
+ ∇ · [(d + η)uα] + ∇ ·

{(

z2
α

2
−

d2

6

)

d∇(∇ · uα)

+

(

zα +
d

2

)

d∇[∇ · (duα)]

}

= 0 (4.3)

∂uα

∂t
+ g∇η + (uα ·∇)uα + zα

{

zα

2
∇
(

∇ ·
∂uα

∂t

)

+∇
[

∇ ·
(

d
∂uα

∂t

)]}

= 0 (4.4)

where η is the water surface elevation, d is the local water depth, uα = (uα, vα) is

the horizontal velocity at depth zα, ∇ = (∂/∂x, ∂/∂y) is the horizontal gradient

operator and g = 9.81ms−2 is the acceleration due to gravity.
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4.1.1 Dispersive properties of Nwogu’s Boussinesq Equa-

tions

Nwogu (1993), in the formulation of his Boussinesq system, used a velocity at an

arbitrary depth, zα, as a parameter in its derivation. This allows it to use the

values for the horizontal velocity at the seabed, the still water level or anywhere

in between. The choice of depth where the horizontal velocity is calculated is

made in order to minimise the error between the dispersion present in the current

formulation and that given by linear dispersion theory. For this analysis, the

linearised version of the full Nwogu Boussinesq system is used and a constant

depth is assumed, i.e.,

∂η

∂t
+ d

∂uα

∂x
+

(

α +
1

3

)

d3∂3uα

∂x3
= 0 (4.5)

∂uα

∂t
+ g

∂η

∂x
+ αd2 ∂3uα

∂x2∂t
= 0 (4.6)

where α is related to zα and d by the quadratic equation

α =
1

2

(zα

d

)2
+

zα

d
. (4.7)

The value of α can be chosen from any value in the interval −1/2 ≤ α ≤ 0

depending upon the depth where the velocity is calculated. For example, the

velocity at the seabed corresponds to a value of α = −1/2. Alternatively, if the

velocity at the still water level is required, then this corresponds to a value of

α = 0.

Assuming a periodic sinusoidal wave of amplitude a, period T = 2π/ω and

wavelength L = 2π/k (where ω is the wave frequency and k is the wavenumber),

i.e.,

η = a sin(kx − ωt) (4.8)

u = b sin(kx − ωt) (4.9)

leads to the following expression for the dispersion relation (Nwogu, 1993; Walkley

and Berzins, 1999b)

C2 =
ω2

k2
= gd

[

1 − (α + 1/3) (kd)2

1 − α(kd)2

]

. (4.10)

where C is the phase speed. The linear dispersion relation for Airy waves is given
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by

C2 = gd
tanh(kd)

kd
. (4.11)

The group velocity, Cg, that governs the wave energy in a wave train is also

important when considering the dispersion properties of the governing equations.

Nwogu (1993) derived the group velocity for his equation system and it is given

by

Cg =
dω

dk
= C

{

1 −
(kd)2/3

[1 − α(kd)2] [1 − (α + 1/3)(kd)2]

}

. (4.12)

The normalised phase speeds and group velocities for Nwogu’s Boussinesq

equations for different values of α have been plotted in Figs. 4.1 and 4.2 against

the water depth to wavelength ratio d/L in the interval 0 < d/L ≤ 1/2 (replicating

two figures from Nwogu (1993)). Recall the the shallow water limit is considered

to be d/L < 1/20, the intermediate depth is considered to be 1/20 ≤ d/L ≤ 1/2

and the deep water limit is d/L > 1/2.
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Figure 4.1: Dispersive properties of Nwogu’s Boussinesq equations: comparison of
the normalised phase speeds for different values of α.

Fig. 4.1 shows that at the shallow water limit the dispersion relations are all

equivalent to the exact dispersion relation given by Eq. (4.11). However, as the

depth to wavelength ratio increases, it is clear that the choice of α will considerably

alter the dispersive properties of the governing equations. Values of α = −1/3

and α = −2/5 correspond to the system of equations derived by Peregrine (1967)

and Witting (1984) respectively. It is clear that Peregrine’s system of equations



4.2. Finite Difference Methods 81

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0  0.1  0.2  0.3  0.4  0.5

C
/C

g
A

ir
y

d/L

α = −0.39

α = −2/5

α = −1/3α = 0

α = −1/2

Figure 4.2: Dispersive properties of Nwogu’s Boussinesq equations: comparison of
the normalised group velocities for different values of α.

are only applicable up to d/L = 0.1 and will be insufficient for modelling wave

propagation in intermediate depth water. The dispersion of the system using the

velocity at the seabed (α = 0) gives the poorest comparison to linear dispersion

theory. This is, of course, to be expected as the particle motion near the seabed

is minimal. The value of α = −0.390, which corresponds to a water depth of zα =

0.531d, was obtained by minimising the error between Eqs. (4.10) and (4.11). The

comparison of the group velocities in Fig. 4.2 shows that the value of α = −0.390

gives a reasonable approximation of the exact dispersion relation. It is evident

from Figs. 4.1 and 4.2 that this value provides the best dispersion properties for

the governing equations, when compared to linear wave theory, and is used for all

subsequent calculations.

4.2 Finite Difference Methods

A common approach in the numerical solution of differential equations or systems

of differential equations is to discretise the solution domain into a number of

solution points (or nodes). The solution of the system at each of these nodes is

then calculated by way of finite differences that are derived via a rearrangement

of the Taylor series expansion.

A finite difference discretisation is represented in Fig 4.3. Here, a one- dimen-

sional solution domain is discretised into five solution nodes. The spatial step
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between each of the nodes is constant in this case and is denoted by ∆x. The

values at these nodes over time are denoted by n− 1, n and n+1 where n are the

current known values, n− 1 are the previous values and n + 1 are the next values

to be calculated. The time step is denoted by ∆t. For an arbitrary variable a, the

value of node i at time step n is given by the notation an
i .

n − 1

n

n + 1

i − 2 i − 1 i i + 1 i + 2

time

x

∆t∆x

Figure 4.3: Finite difference discretisation.

The Taylor series provides an approximation of a function at a given point.

For example, consider a function f(x) at the point x + ∆x. The Taylor series

expansion is (using the subscript notation fi+1 = f(x + ∆x))

fi+1 = fi +
∆xf ′

i

1!
+

∆x2f ′′
i

2!
+

∆x3f (3)
i

3!
+ . . . +

∆xnf (n)
i

n!
(4.13)

where f ′
i , f

′′
i , . . . , f (n)

i (x) denote the derivatives of f(x) and n! denotes the factorial

of n. The accuracy of the series expansion of a function is dependent upon the

number of terms included in the series. For an nth-order accurate expansion of

the function f(x), only the terms up to and including f (n)(x) are retained. For

example,

fi+1 = fi + ∆xf ′
i + . . . + ∆xnf (n)

i + O(∆xn+1) (4.14)

where O(∆xn+1) denotes the truncation error due to the absence of the higher-

order terms. The method of undetermined coefficients has been used to derive the

finite-differences, details of which can be found in Appendix B.

4.2.1 Time differencing

The finite difference approximations derived in Appendix B approximate the spa-

tial derivatives (i.e., ∂y/∂x). A similar approach can be used to derive approxima-
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tions of the time derivative ∂y/∂t. However, using central or forward differences

in time, the calculation at the next time step n + 1 will require knowledge of the

values at future time steps n + 2, n + 3, . . .. It is common to use a backward

treatment for the time derivatives so that the values at n + 1 are only dependent

upon previously calculated values at n, n − 1, n − 2, . . .. The Adams-Bashforth

and Adams-Moulton time marching methods are used in Section 4.3 to advance

the solution of the extended Boussinesq equations through time. Adams’ methods

are an example of a backwards treatment of the time derivative.

4.3 Finite Difference Solver for the Boussinesq

Equations

Previous methods for solving Boussinesq-type models have mainly utilised finite

difference methods. Peregrine (1967) and Abbot et al. (1978) both used finite

difference methods to solve the standard Boussinesq equations, and Nwogu (1993)

used a third-order Crank-Nicholson formulation to solve his system of extended

Boussinesq equations. Other numerical methods that have been used to solve

Boussinesq equations include a finite-element implementation by Walkley and

Berzins (1999a, 2002) for Nwogu’s system and a hybrid finite volume/finite differ-

ence implementation by Ilic et al. (2005) for the equations of Madsen and Sørensen

(1992). The numerical solver for an extended Boussinesq formulation that has re-

ceived the most interest is a finite difference method by Wei and Kirby (1995).

Wei and Kirby (1995) in their scheme approximated the first-order spatial

derivatives to fourth-order accuracy, and second-order spatial derivatives to second-

order accuracy. Coupled with a fourth-order accurate in time predictor/corrector

scheme, this treatment ensures that the truncation errors in the numerical approx-

imations are smaller than that of the dispersive terms retained by the governing

equations. Here, Wei and Kirby’s scheme has been applied to solve Nwogu’s

Boussinesq system. In this section only one spatial dimension is considered,

Eqs. (4.15) and (4.16). A complete description of the full two-dimensional scheme
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can be found in (Wei and Kirby, 1995).

∂η

∂t
+

∂

∂x
[(d + η)uα] +

∂
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2
−

d2

6

)

d
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d
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∂x2
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(4.15)
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2

∂3uα
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∂x2
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d
∂uα
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(4.16)

Rearranging Eqs. (4.15) and (4.16) so that all terms involving a time derivative

are on the left-hand side gives

∂η

∂t
= E, (4.17)

∂U

∂t
= F, (4.18)

where

E = −
∂

∂x
[(d + η)uα] −

∂

∂x

[(

z2
α

2
−

d2
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d
∂2uα
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zα +
d

2
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d
∂2

∂x2
(duα)
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, (4.19)

F = −g
∂η

∂x
− uα

∂uα

∂x
, (4.20)

and

U = uα + zα

[

zα

2

∂2uα

∂x2
+

∂2

∂x2
(duα)

]

. (4.21)

The rewritten form of the governing equations, Eqs. (4.17) and (4.18), results

in a purely tri-diagonal system for the horizontal velocities in Eq. (4.21) when

a second-order central difference stencil is used. Time differencing is achieved

through a fourth-order predictor/corrector method. The predictor values for η

and U are calculated using a third-order Adams-Bashforth explicit scheme given

by

ηn+1/2
i = ηn

i +
∆t

12

[

23En
i − 16En−1

i + 5En−2
i

]

, (4.22)

Un+1/2
i = Un

i +
∆t

12

[

23F n
i − 16F n−1

i + 5F n−2
i

]

, (4.23)

where the superscripts n, n−1 and n−2 denote the known values at the previous

and current time step, n+1/2 denotes the predicted values and ∆t is the time step.

For the first iteration of the predictor/corrector scheme the values of the previous

time steps are unknown. In this study, these values were initialised by setting them
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equal to the initial conditions. The evaluation of the horizontal velocities is then

achieved through the solution of a tri-diagonal system given by Eq. (4.21). The

coefficient matrices are constant and therefore can be inverted and stored for use

at each time level. However, it was found that the implementation of the Thomas

algorithm (Thomas, 1949) at each time step provided significant improvement on

the overall computation time (Section 4.3.2).

The corrector stage used to calculate the values for the next time step n + 1 is

a fourth-order Adams-Moulton method given by

ηn+1
i = ηn

i +
∆t

24

[

9En+1/2
i + 19En

i − 5En−1
i + En−2

i

]

, (4.24)
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24

[
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i + 19F n

i − 5F n−1
i + F n−2

i

]

. (4.25)

The corrector stage is iterated until convergence between two successive iterations

is achieved. The difference between two successive iterations of the corrector stage

is calculated using

Difference = max
i
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

 , (4.26)

where ()∗ denotes the estimate from the previous iteration. The tolerance used in

all computations was set at 1 × 10−4 and typically required just one iteration of

the corrector to reach convergence.

4.3.1 Spatial differencing

As discussed in the previous section, first and second-order spatial derivatives are

evaluated to fourth-order and second-order accuracy respectively. The method of

undetermined coefficients was used to derive the appropriate difference schemes.

For first-order derivatives, the following fourth-order stencil was applied

(

∂f

∂x

)

i

=
fi−2 − 8fi−1 + 8fi+1 − fi+2

12∆x
, (4.27)

where f = {η, u} and i is the spatial index.

For most of the solution domain a centred discretisation is applicable. However,

for the first computational nodes in from the boundary (f2, fn−1) and those nodes
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on the boundary (f1, fn) the following skewed difference schemes are used

(

∂f

∂x

)

1

=
−25f1 + 48f2 − 36f3 + 16f4 − 3f5

12∆x
, (4.28)

(

∂f

∂x

)

2

=
−3f1 − 10f2 + 18f3 − 6f4 + f5

12∆x
, (4.29)

(

∂f

∂x

)

n−1

=
3fn + 10fn−1 − 18fn−2 + 6fn−3 − fn−4

12∆x
, (4.30)

(

∂f

∂x

)

n

=
25fn − 48fn−1 + 36fn−2 − 16fn−3 + 3fn−4

12∆x
. (4.31)

The second-order spatial derivatives are approximated to second-order accu-

racy using the finite difference stencil

(

∂2f

∂x2

)

i

=
fi−1 − 2fi + fi+1

∆x2
. (4.32)

The second-order derivatives are either specified at the boundary or are not re-

quired in the solution procedure depending upon the problem specification.

4.3.2 The Thomas algorithm

Applying the finite difference stencil Eq. (4.32) to Eq. (4.21) results in the following

finite difference scheme

Ui =

(

z2
α

2∆x2
+

zαdi−1

∆x2

)

uα,i−1 +

(

1 −
z2

α

∆x2
−

2zαdi

∆x2

)

uα,i

+

(

z2
α

2∆x2
+

zαdi+1

∆x2

)

uα,i+1. (4.33)

Eq. (4.33) can be written as a matrix equation giving the tri-diagonal system



















U1

U2

...

Un−1

Un



















=



















b1 c1

a2 b2 c2

. . . . . . . . .

an−1 bn−1 cn−1

an bn





































uα,1

uα,2

...

uα,n−1

uα,n



















, (4.34)
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where

ai =
z2

α

2∆x2
+

zαdi−1

∆x2
, (4.35)

bi = 1 −
z2

α

∆x2
−

2zαdi

∆x2
, (4.36)

ci =
z2

α

2∆x2
+

zαdi+1

∆x2
. (4.37)

The Thomas algorithm is employed to solve the tri-diagonal matrix system

given in Eqs. (4.34)–(4.37). The algorithm is a well known algorithm that is more

computationally efficient than Gaussian elimination for solving tri-diagonal matrix

equations. The algorithm is thought to have been developed by Thomas (1949)

although the first full description appeared in an article by Bruce et al. (1953)

(Ames, 1977).

The algorithm is described in two stages. The first stage is a forward sweep of

the matrix to eliminate the lower diagonal terms, ai. The new terms in the main

diagonal, b′i, are then given by

b′i = bi − c′i−1

ai

b′i−1

(4.38)

and the new left-hand side vector terms, U ′
i , are given by

U ′
i = Ui − U ′

i−1

ai

b′i−1

. (4.39)

The second stage consists of a backwards sweep to obtain the solution. First

the nth term is calculated using

uα,n =
U ′

n

b′n
(4.40)

and then the remaining terms, uα,n−1, uα,n−2, . . . uα,1 are found by

uα,i =
U ′

i − c′iuα,i+1

b′i
. (4.41)

The Thomas algorithm is called at each iteration after the predictor/corrector

stages have been calculated.
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4.3.3 Time step calculation and stability

The predictor/corrector scheme described in Section 4.3 is not fully implicit in

nature, therefore there exists a constraint on the size of time step required to

ensure stability. Numerical experiments have indicated that for the numerical

scheme to remain stable, the values that the Courant number can take are in the

interval 0 < ν ≤ 1. The calculation of the maximum allowable time step, ∆t, is

analogous to that used for the MUSCL-Hancock scheme in Section 2.2.5, i.e.,

∆t = ν min
i

(

∆x

|uα,i| +
√

g(di + ηi)

)

. (4.42)

4.4 Boundary conditions

Without special treatment for the flow of mass across the solution boundaries,

problems that use the extended Boussinesq equations are limited to initial value

problems only. It is for this reason that three different types of boundary condi-

tions are discussed here. These are:

• Incident wave boundary conditions,

• Absorbing boundary conditions,

• Solid wall boundary conditions.

As only the one-dimensional form of the governing equations has been pre-

sented here, the boundary conditions are specified for the one-dimensional case

only. For the remainder of this section it is assumed that the computational nodes

are indexed 1, 2, . . . , n where the index 1 represents the values at the left-hand

boundary and an index of n represents the values at the right-hand boundary

(Fig. 4.4).

BoundaryBoundary

1 2 3 . . . n − 1 n

Figure 4.4: Node numbering convention for boundary conditions.
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4.4.1 Incident wave boundary condition

To allow the extended Boussinesq equations to be applied to model wave propa-

gation (either single period or random waves), a boundary condition is required

that can introduce a wave profile into the solution domain. Values for the con-

served variables, η and uα, are specified at the boundary. Nwogu (1993) derived

the following relationship between the water surface of the incident wave at the

boundary ηI and the velocity uα,I using linear wave theory

uα,I =
ω

kd0[1 − (α + 1/3)(kd0)2]
ηI (4.43)

where u1 is the horizontal velocity at the boundary, ω = 2π/T is the wave fre-

quency of the incident wave, k the wave number and d0 is the depth at the bound-

ary.

In practice, it was found that this treatment of the boundary condition tended

to cause spurious oscillations in the solution domain unless the wave profile, and

therefore the time derivative, is known a priori. In addition to the fact that this

treatment does not allow for waves to propagate out of the boundary where it is

applied, the incident wave boundary is given here for completeness, although it

has not been used in the calculations performed in this study.

4.4.2 Radiation boundary condition

Radiation boundary conditions are used where a boundary is required that allows

waves to pass out of the solution domain without reflection. In order to satisfy

this condition, it can be shown the the mass governing equation Eq. (4.15) at the

boundary is written as (Nwogu, 1993)

∂η

∂t
+ C

∂η

∂x
= 0 (4.44)

where C = ω/k is the phase speed, ω = 2π/T is the wave frequency, T is the wave

period and k is the wave number.

The application of the boundary condition, Eq. (4.44), in the current model

causes some reflection at the boundary due to the fact that no single phase speed

exists for the system (Wei and Kirby, 1995). Without further treatment, the re-

flected energy causes oscillations near the boundary and eventually the scheme

becomes unstable. To overcome this, it is common to use sponge layers at absorb-

ing boundaries to dampen the wave energy as the waves approach the boundary
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(Section 4.6).

4.4.3 Solid wall boundary condition

A method of simulating a solid wall boundary condition is necessary for modelling

wave reflection. Here it is assumed that the gradient of the water surface and the

velocity across the boundary are zero where the solid wall boundary condition is

applied. For example, when this treatment is applied to the right-hand boundary

uα,n = 0, (4.45)
(

∂η

∂x

)

n

= 0. (4.46)

4.5 Internal wave generation

For cases where there are going to be reflective waves propagating back past the

incident wave boundary, the treatment of the boundary conditions given in Sec-

tion 4.4.1 would be insufficient. Specifying the variables at the boundary will not

allow for waves to pass out of the solution domain, and oscillations will occur at

the boundary contaminating the solution.

To overcome this problem, Larsen and Dancy (1983) proposed a method where

a volume of fluid is added to the mass governing equation, Eq. (4.3), at a single

grid point to create a wave propagating in both directions. Sponge layers (see

Section 4.6) were used at absorbing boundaries to dampen the waves that are

absorbed by the radiation boundary condition, Eq. (4.44). This approach was

extended by Lee et al. (2001) who found that using energy transport as opposed

to mass transport provided more accurate wave amplitudes in the wave train.

However both approaches used a single grid point to oscillate on a staggered

finite difference grid. If the same approach was employed on an un-staggered

grid, oscillations are formed that soon cause the numerical scheme to become

unstable. To allow internal generation of waves using their fourth-order finite

difference method, Wei et al. (1999) extended the basic idea where mass is added

to the momentum equation over a range of grid points in the form of a Gaussian

curve instead of a single grid point. This approach enabled a scheme using an

un-staggered grid to employ a source function method to generate waves in the

solution domain. In keeping with the other sections in this chapter, only the

one-dimensional case is considered.
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A source function, f(x, t), is added to Eq. (4.15) at every iteration of the solver

(Fig. 4.5).

Figure 4.5: Internal wave generation using source function method.

∂η

∂t
+

∂

∂x
[(d + η)uα] +

∂

∂x

[(

zα

2
−

d2

6

)

d
∂2uα

∂x2
+

(

zα +
d

2

)

d
∂2

∂x2
(duα)

]

= f(x, t)

(4.47)

The source function itself consists of a product of two functions g(x) and s(t),

where g(x) is a Gaussian shape function and s(t) is a time dependent input signal.

f(x, t) = g(x)s(t). (4.48)

The Gaussian shape function is defined by

g(x) = exp
[

−β(x − xs)
2
]

(4.49)

where xs is the centre of the Gaussian curve and β is a parameter that determines

the width of the source function. The larger the value of β, the narrower the

source function will be. However, if the source function is too narrow, spurious

oscillations can enter the solution. If the source function is too wide, the extra

grid points that are used in the source function can cause the solver to slow down.

For the best results, it was found that the width of the source function, W , is half

the wavelength L. It can be shown that

W = 2

√

5

β
. (4.50)

If the source function is assumed to be one half of the wavelength, i.e., W = L/2,
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then Eq. (4.50) becomes
L

2
= 2

√

5

β
. (4.51)

Therefore, the parameter β can be given by

β =
80

L2
. (4.52)

For random waves, β is determined by the peak frequency of the wave train

(Tp). The time dependent input signal is defined by

s(x) = D sin(−ωt) (4.53)

where D is the magnitude of the source function, ω = 2π/T is the wave frequency,

T is the wave period and t is the time. Wei et al. (1999) derived the following

expression for D

D =
2a0(ω2 − α1gk4d3)

ωIk[1 − α(kd2]
(4.54)

where a0 is the required wave amplitude, α1 = α + 1/3 and I is an integral given

by

I =

∫ ∞

−∞

exp(−βx2) exp(−iLx) dx =

√

π

β
exp

(

−
L2

4β

)

. (4.55)

4.6 Sponge layers

Sponge layers are used in conjunction with the radiation boundary condition

Eq. (4.44) to model absorbing boundaries. The sponge layer consists of a function

of the horizontal velocity that is added to the momentum equation Eq. (4.16) to

dampen the wave energy approaching the boundary, i.e.,

∂uα

∂t
+ g

∂η

∂x
+ u

∂uα

∂x
+ zα

[

zα

2

∂3uα

∂x2∂t
+

∂x

∂x2

(

d
∂uα

∂t

)]

= Fsponge(uα). (4.56)

The dampening function Fsponge(uα) is defined by

Fsponge(uα) = α1ωf(x)uα, (4.57)

where α1 is a free parameter to be determined for each individual run, ω = 2π/T

is the frequency of the wave to be dampened, T is the period of the wave to be

dampened and f(x) is a monotonic function that increases from 0 to 1 as it nears

the boundary. For random waves, the value of T and therefore ω is not known



4.7. Numerical Results 93

at the present time step. Therefore, in practice, the peak wave period is used to

calculate ω, resulting in a sponge layer of constant width. f(x) is defined by

f(x) =
exp[(x − xs)/(xe − xs)]2 − 1

exp(1) − 1
(4.58)

where xs and xe are the start and end points of the sponge layer respectively. It

was found that a sponge layer of approximately three times the typical wavelength

was sufficient to dampen the wave energy whilst ensuring that no more grid points

than necessary were used.

4.7 Numerical Results

Before the extended Boussinesq equations are applied to model wave run-up and

overtopping, it is necessary to validate the numerical solver to ensure that the

scheme provides solutions to the required accuracy. A number of standard test

cases have been applied to the numerical solver presented in Sections 4.3–4.6 to

validate, in particular, the boundary conditions and the source function method

for generating waves.

4.7.1 Solitary wave propagation

Solitary wave propagation provides a good test for governing equations that in-

clude dispersive terms. A solitary wave (often referred to as a soliton) propagating

down a flat-bedded channel will experience no loss of amplitude or velocity. This is

due to an exact balance between the dispersion, which acts on the wave to spread

it out into a series of waves, and non-linear effects which tend to steepen the wave.

Here, the numerical scheme described in Section 4.3 is applied to a solitary

wave propagation problem used by Wei and Kirby (1995). The water surface, η,

and velocity, uα, are given by

η = A1sech
2[B(x − Ct)] + A2sech

4[B(x − Ct)] (4.59)

uα = Asech2[B(x − Ct)] (4.60)
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where A, B, A1 and A2 are constants defined by

A =
C2 − gd

C
(4.61)

B =

(

C2 − gd

4d2[(α + 1/3)gd− αC2]

)1/2

(4.62)

A1 =
C2 − gd

3[(α + 1/3)gd − αC2]
d (4.63)

A2 = −
(C2 − gd)2

2gdC2

[(α + 1/3)gd + 2αC2]

[(α + 1/3)gd − αC2]
d (4.64)

where C is the phase speed dependent upon the α parameter and the wave am-

plitude to water depth ratio (a/d) by the following relation

2α

(

C2

gd

)3

−
(

3α +
1

3
+ 2α

a

d

)(

C2

gd

)2

+2
a

d

(

α +
1

3

)(

C2

gd

)

+α+
1

3
= 0. (4.65)

The roots of Eq. (4.65) are calculated using the Newton-Raphson method and

converge to a solution with little computational effort.

The numerical scheme has been tested on the solution of a solitary wave propa-

gating down a channel 450 metres in length with constant depth, d = 0.45 metres.

The channel is discretised into 4501 solution nodes given a spatial step of ∆x = 0.1

metres. The solitary wave has an amplitude of a = 0.045 metres, giving a phase

speed of C = 2.203ms−1. The solitary wave is created at the left-hand boundary

by explicitly stating values for η and u from Eqs. (4.59)–(4.65). The numerical

solution to this problem at times, t = 40, 80, 120, 160 and 200 seconds can be

seen in Fig. 4.6. A comparison between the numerical solution and the analytical

solution at time t = 160 seconds can be seen in Fig. 4.7. The values of the water

surfaces in Fig. 4.6 have been deliberately offset to best show the computed water

surface over the course of the simulation.

Fig 4.6 shows that the solitary wave propagates down the channel with no

loss of amplitude or velocity. Very small high frequency oscillations are present

behind the propagating solitary wave which are a feature of higher-order finite

difference schemes. These oscillations although present, do not significantly affect

the solution. Fig 4.7 shows a magnified plot of the analytical and numerical

solutions at time t = 100 seconds. There is excellent agreement between the two

sets of values indicating that a fourth-order solver is sufficient for calculating the

dispersion terms in Nwogu’s Boussinesq formulation.
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Figure 4.6: Solitary wave propagation: plots of the water surface elevation for
times, t =40, 80, 120, 160 and 200 seconds.
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Figure 4.7: Solitary wave propagation: a comparison of the numerical water sur-
face and the analytical water surface at time t = 100 seconds.
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4.7.2 Solitary wave interaction

Here the numerical scheme described in Section 4.3 has been applied to solve the

problem of solitary wave interaction. Another property of solitary waves is that

due to the dispersion being perfectly balanced with the steepening exhibited by

the velocity of the wave, a solitary wave is able to pass through another solitary

wave without loss of shape or amplitude.

The problem specification is similar to that described in Section 4.7.1, with

the exception that another upstream travelling solitary wave is specified at the

right-hand boundary using Eqs. (4.59)–(4.65). With a water depth of d = 0.45

metres and an amplitude of a = 0.045 metres, the corresponding phase speed is

calculated as C = 2.203ms−1 meaning that the two waves cross at t = 102.13

seconds. Fig. 4.8 shows water surface plots at time t = 40, 80, 120, 160 and 200

seconds.

0 50 100 150 200 250 300 350 400 450

x (m)

η = 0 m

η = 0 m

η = 0 m

η = 0 m

η = 0 m t = 40 s

t = 80 s

t = 120 s

t = 160 s

t = 200 s

Figure 4.8: Solitary wave interaction: plots of the water surface elevation for times,
t =40, 80, 120, 160 and 200 seconds.

The plots of the solution to the solitary wave interaction problem in Fig. 4.8

show that both of the solitary waves maintain their shape after the interaction has

taken place. It is also worth noting that the interaction did not have any effect

on the velocity of the travelling waves.
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4.7.3 Monochromatic wave propagation

The internal generation of monochromatic waves using the source function method

given in Section 4.5 has been tested using the numerical scheme described in

Section 4.3. Firstly, wave generation was tested using a single wave period in order

to test the source function method and to ensure that the absorbing boundaries

perform satisfactorily. Secondly, the source function method was tested over a

range of different wave periods.

For both of the tests, the dimensions of the channel were set at 50 metres with

a water depth of d = 0.5 metres. The centre of the source function was located

half way along the channel, at xs = 25 metres, and the sponge layers were located

within the 50 metre channel (Fig. 4.9).

source function

sponge layer sponge layer

d = 0.5m

Figure 4.9: Monochromatic wave propagation flume.

4.7.3.1 Single period monochromatic wave

A monochromatic wave with period T = 1.0 seconds was generated using the

source function method. The amplitude of the wave was set at a = 0.05 metres

giving a wavelength of L = 1.513 metres and a relative depth ratio of d/L =

0.33. The width of the sponge layers was set at three times the wavelength, i.e.,

xe − xs = 4.539 metres and a value of α1 = 0.2 was used for the free parameter.

Plots of the normalised water surface at times t = 10, 20, 40 and 100 seconds are

shown in Fig. 4.10.

Fig. 4.10 shows that the method of generating monochromatic waves by use

of the internal source function works well with the numerical scheme. The waves

created all have the desired amplitude, period and wavelength. At t = 40 seconds,

the waves have propagated past the absorbing boundaries showing that the use
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Figure 4.10: Internally generated monochromatic wave: plots of the normalised
water surface elevation (T = 1 s) at time (from top to bottom) t = 10, 20, 40, 100
s. The source function is centred at xs = 25 metres.

of the radiation boundary condition and sponge layer combination satisfy the

conditions for an absorbing boundary. The solution of the problem at t = 100

seconds is very similar to that at t = 40 seconds indicating that a quasi-steady

state is reached.

4.7.3.2 Multiple period monochromatic wave

Monochromatic waves with amplitude, a = 0.05 metres, and periods, T = 1, 1.5

and 2.0 seconds, have been created using the source function method. The cor-

responding wavelengths are L = 2.827 and L = 4.056 metres giving depth to

wavelength ratios of 0.177 and 0.123 for periods T = 1.5 and 2.0 seconds respec-

tively. The length of the sponge layers are three times the wavelength in each

case and α1 = 0.2. Fig. 4.11 shows the normalised water surface at time t = 100

seconds.

The plots of the normalised water surface in Fig. 4.11 show that the source

function method can create monochromatic waves over a range of wave periods.
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Figure 4.11: Internally generated monochromatic wave: plots of the normalised
water surface elevation at time t = 100 seconds for periods (from top to bottom)
T = 1.0, 1.5, 2.0 seconds. The source function is centred at xs = 25 metres.

4.7.4 Monochromatic wave reflection

The internal generation of waves only real application is to provide a method of

inducing waves into the solution domain that also permits the outflow of waves

through the incident wave boundary. If a method of this kind is unable to allow

waves to pass out through the computational domain then problems will be limited

to propagation in one direction only.

In order to test the source function method’s ability to allow reflected waves to

pass out of the computational domain, monochromatic wave reflection was used.

The problem consisted of a channel 25 metres in length with a constant depth of

0.4 metres. Waves were induced into the channel by the source function method

that was centred at the left-hand boundary (Fig. 4.12). A sponge layer was used to

dampen the left-hand travelling waves propagating from the source function. At

the right-hand boundary, a solid wall boundary condition was used (Section 4.4.3).

The source function generated a monochromatic wave in the same way that

was observed in Sections 4.7.3.1 and 4.7.3.2. The left-hand travelling waves were

dampened by the sponge layer and absorbed by the radiation boundary conditions.
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Figure 4.12: Monochromatic wave reflection: sketch of wave flume.

The right-hand travelling waves propagated up to the right-hand boundary at

which point they were reflected back into the computational domain by the solid

wall boundary condition at double the amplitude. Eventually the reflected waves

passed through the source function and were absorbed by the sponge layer.
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Figure 4.13: Monochromatic wave reflection: plots of the normalised water surface
(T = 1s) at time (from top to bottom) t = 20, 40 and 80 seconds.
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Fig. 4.13 shows the normalised water surface for times, t = 20, 40 and 80

seconds. At time t = 20 seconds, the waves generated by the source function have

propagated into the flume. At time t = 40 seconds, the waves have propagated

up to the solid wall boundary and wave reflection has occurred producing waves

at double the amplitude of the incident waves. The plot of the water surface at

time t = 80 seconds shows that the reflected waves have propagated back to the

incident boundary and have been allowed to pass out of the solution domain.
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Figure 4.14: Standing wave created by monochromatic waves reflection: plots of
the normalised water surface (T = 1s) at time t = 80 and 80.5 seconds.

Fig. 4.14 shows a plot of the normalised water surface at times t = 80 and

t = 80.5 seconds, i.e., half a wave period apart. Provided that the source function

method allows waves to pass out of the solution domain without any reflection

at all, standing waves should occur. It is clear from Fig. 4.14 that each anti-

node oscillates between 2a and −2a (where a denotes the wave amplitude), thus

indicating that standing waves has indeed occurred. This, along with Fig. 4.13,

shows that the source function method is an appropriate method with which to

generate waves at a boundary that also allows waves to pass out of the solution

domain.

4.7.5 Regular wave propagation over a submerged bar

Regular wave propagation over a submerged bar has been widely used as a test

case for comparisons between various numerical models and experimental measure-
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ments. Dingemans (1987) was the first to use the trapezoidal bar to verify Delft

Hydraulics’ numerical model HISWA for wave propagation over a submerged bar.

This experiment has been repeated since, most notably by Beji and Battjes (1993)

and Luth et al. (1994), the latter of which was performed with a length scale twice

as large as the flume presented here. Dingemans (1994) provided comparisons be-

tween various Boussinesq-type models and experimental measurements performed

by a number of different experimentalists using the same basic bathymetry and,

more recently, Gobbi and Kirby (1999) used it as a validation exercise for their

higher-order Boussinesq formulation.

The wave evolution occurs as follows (Gobbi and Kirby, 1999): as the wave

propagates along the front slope, nonlinear interactions cause a steepening of the

wave. When the wave begins to travel along the back slope the coupling of the

higher frequency waves to the fundamental wave becomes weaker and eventually

the fundamental wave breaks up into the Fourier components which form free

waves which travel at different speeds. Modelling this nonlinear behaviour repre-

sents a tough test for Boussinesq-type models.

0 6 12 14 17 23

0.3m

Wave generator Wave absorber
d = 0.4m

1:20 1:10

x (m)

Figure 4.15: Sketch of wave flume of the Delft Hydraulics experiments.

For the purposes of the comparison performed here, the numerical solver has

been tested against the experiments performed by Beji and Battjes (1993). The

bathymetry of the bar consisted of a 1:20 front slope and a 1:10 back slope sepa-

rated by a level plateau of 2.0 metres in length. The water depth was 0.4 metres

measured from the bottom of the flume, decreasing to 0.1 metres on top of the

submerged bar (Fig. 4.15). Regular waves were generated by a wave generator

placed at one end of the flume and a wave absorber served to dampen all energy

and remove any reflected waves that propagated back into the flume. Beji and

Battjes (1993) performed their experiments for three different wave conditions

listed in Table 4.1. Configuration (a) ensures that none of the waves break as they
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propagate up the front slope, configuration (b) provides spilling breakers that were

visually observed and configuration (c) provides non-breaking waves with a small

period.

Table 4.1: Wave configurations for the experiments performed by Beji and Battjes
(1993)

Configuration Wave height (m) Wave period (s) Comments
(a) 0.020 2.020 non-breaking waves
(b) 0.029 2.525 spilling breakers (13.3m ≤ x ≤ 15.3m)
(c) 0.041 1.010 non-breaking waves

The numerical model of the submerged bar test used the source function

method to generate the regular waves for the values of wave height and period,

corresponding to the test configurations (a), (b) and (c). A sponge layer was

placed at the opposite end of the numerical flume starting at x = 23 metres to act

as a numerical analogy to the wave absorber used in the physical experiments. Six

depth gauges were placed along the length of the flume to record the water surface

elevations. The locations of the depth gauges used for comparison purposes here

were x = 2.0, 5.7, 10.5, 13.5, 15.7 and 19.0 metres, corresponding to the locations

used in the first run of the experiments performed by Beji and Battjes (1993). It

should be noted that in the experiment, the location of the second gauge was in-

accurate and subsequent analysis has shown that the actual gauge location should

be x = 5.2 metres. The comparisons made here are made against the uncorrected

gauge location.

The solution profile for configuration (b) is given in Fig. 4.16 and clearly shows

the regular waves propagating from the source function and beginning to steepen

as they approach the plateau. From the latter part of the plateau the disintegration

of the fundamental waves and the propagation of the free waves can be seen.

The water surface elevations at each of the six depth gauges over the time

interval 40 ≤ t ≤ 50 seconds for configurations (a), (b) and (c) are given in

Figs. 4.17, 4.18 and 4.19 respectively. The comparisons given in Fig. 4.17 for

test configuration (a) show good agreement between the numerical solver and the

experimental water surface. Regular waves are observed for the plots showing the

gauges placed before the bar and on the front slope. A phase error is evident for

the gauge placed at x = 5.7 metres caused by the error in the gauge location,

as noted earlier. The gauges located on the top of the bar, the 1:10 back slope

and after the bar show that the higher-frequency waves have separated and are

travelling at their own speeds and exhibit periodic behaviour.
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Figure 4.16: Regular wave propagation over a submerged bar: solution profile at
time t = 50 seconds for configuration (b).

For the test configurations (b) and (c) (Figs. 4.18 and 4.19) the numerical

scheme shows poorer agreement than for configuration (a). For the gauges placed

on the front side of the bar, the numerical scheme under-predicts the heights of

the periodic wave. Configuration (b) exhibited some breaking waves in the range

13.3 ≤ x ≤ 15.3 metres, and whilst the gauge placed at x = 13.5 metres shows

reasonable agreement with the experimental data, the gauge placed at x = 15.7

metres shows a clear overshoot of the water surface. Configuration (c) consisted

of a non-breaking wave conditions. For all six depth gauges the numerical scheme

over-predicts the wave heights observed in the physical experiments.
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Figure 4.17: Regular wave propagation over a submerged bar: water surface ele-
vations from gauges placed at x = 2.0, 5.7, 10.5, 13.5, 15.7, 19.0m from the wave
paddle for test configuration (a).
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Figure 4.18: Regular wave propagation over a submerged bar: water surface ele-
vations from gauges placed at x = 2.0, 5.7, 10.5, 13.5, 15.7, 19.0m from the wave
paddle for test configuration (b).
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Figure 4.19: Regular wave propagation over a submerged bar: water surface ele-
vations from gauges placed at x = 2.0, 5.7, 10.5, 13.5, 15.7, 19.0m from the wave
paddle for test configuration (c).
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4.8 Chapter Summary

An extended form of the Boussinesq equations derived by Nwogu (1993) was pre-

sented. Nwogu used the horizontal velocity at an arbitrary depth as a basis of the

derivation of his equations. This approach leads to a free parameter that deter-

mines the dispersive properties of the system. A comparison against linear wave

theory for both the phase velocity and the group velocity suggests that a value

of α = −0.390 provides the optimum dispersive properties, indicating that the

extended Boussinesq equations are applicable in the range d/L < 0.35.

A finite difference method first suggested by Wei and Kirby (1995) was de-

scribed and implemented. The numerical method integrates through time using a

third-order predictor, fourth-order corrector Adams method. Spatial differencing

is achieved via a fourth-order finite difference approximation for first-order deriva-

tives, and a second-order accurate finite difference approximation for second-order

derivatives, ensuring that the truncation error in the solver is less than that of the

governing equations. The second-order finite difference stencil in the momentum

equation provides a tri-diagonal system that is solved using the Thomas algorithm

at each time step. The boundary conditions for reflected and absorbing bound-

aries were explained, with the latter being achieved using a sponge layer analogy.

Wave generation within the solution domain was also discussed.

The numerical scheme for solving the extended Boussinesq equations was tested

against a number of standard test cases. To begin with, a solitary wave propaga-

tion problem was used to show that the numerical scheme accurately solves the

extended Boussinesq equations. Also, the dispersion terms within the governing

equations ensure that the soliton retains its shape as it propagates along the flume.

The interaction between two solitary waves propagating in opposite directions was

also tested and it was shown that two solitons pass through each other with no

loss of amplitude or velocity.

Wave generation by the internal source function method and the use of ab-

sorbing boundary conditions has been tested for problems involving both single

period and variable period monochromatic wave propagation. It was shown that

the source function method is capable of generating regular waves, and that the

sponge layers dampen the energy to allow waves to pass out of the solution domain

without reflection. The treatment of a solid wall boundary was tested, showing

that the reflecting waves caused the incident amplitude to double and a stand-

ing wave quasi-steady state solution was reached. Finally, the numerical scheme

was used to model regular wave propagation over a submerged trapezoidal bar.
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A common test case for Boussinesq models, the numerical results showed good

agreement with the experimental data, and that the non-linear behaviour of the

fluid is retained by the model.



Chapter 5

Hybrid Finite-Volume/

Finite-Difference Solver

The class of extended Boussinesq equations allow intermediate depth water to be

modelled and therefore provide a more useful alternative than the shallow water

equations (SWE) when considering near shore wave propagation and interaction

with coastal structures. In the previous chapter, the extended Boussinesq equa-

tions derived by Nwogu (1993) and a solution method using a fourth-order finite-

difference method were discussed. It was noted by Wei and Kirby (1995) that

in order to retain the higher order terms in the extended Boussinesq equations,

the numerical scheme needs to be at least fourth-order accurate for the first-order

space and time derivatives.

Finite-difference models are limited to structured discretisations of the solu-

tion domain which greatly limits the shape of the seawall structures that can be

modelled. Recent attempts at using a boundary fitting method for solving the ex-

tended Boussinesq equations have showed promise. Walkley and Berzins (1999b,a)

used a finite-element solver to solve Nwogu’s formulation. Erduran et al. (2005),

Ilic et al. (2005) and Borthwick et al. (2005) have all used a finite-volume scheme

similar to that described in Chapter 2 to approximate the spatial advection terms

in the extended Boussinesq equations of Madsen and Sørensen (1992). The former

used a second-order MUSCL reconstruction with the Hancock predictor/corrector

scheme described in Section 2.2.1 to integrate the governing equations through

time. The latter used a fourth-order MUSCL reconstruction with the time inte-

gration performed by the fourth-order Adams method suggested by Wei and Kirby

(1995) (Section 4.3). The method used by Erduran et al. has since been applied to

solve the extended Boussinesq equations derived by Beji and Nadaoka in Erduran

110
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(2007).

This chapter presents the scheme used by Erduran et al. and has been applied

to solve both Madsen and Sørensen’s and Nwogu’s Boussinesq formulations. The

use of this hybrid scheme to solve Nwogu’s equations has not previously been

examined. Nwogu’s Boussinesq equations were rewritten following the approach

used by Erduran et al. (2005), which produces of form similar to that of the

SWE plus additional dispersion terms. The two Boussinesq formulations were

compared using standard test cases, and Madsen and Sørensen’s equations were

used to model three different sets of experiments examining wave run-up and

overtopping.

5.1 Hybrid Numerical Solver: Nwogu’s Formu-

lation

The extended Boussinesq equations derived by Nwogu are given in Eqs. (4.3) and

(4.4). Considering flow only in the x-direction, these equations can be expressed

as

∂η

∂t
+

∂

∂x
[(d + η)uα] +

∂

∂x

[(

z2
α

2
−

d2

6

)

d
∂2uα

∂x2
+

(

zα +
d

2

)

d
∂2

∂x2
(duα)

]

= 0,

(5.1)

∂uα

∂t
+ g

∂η

∂x
+ u

∂uα

∂x
+ zα

[

zα

2

∂3uα

∂x2∂t
+

∂3

∂x2∂t
(duα)

]

= 0.

(5.2)

All variables are defined in Section 4.1. By following the approach used by Erduran

et al. (2005) for the equations of Madsen and Sørensen of assuming that the

bed surface elevation remains constant through time, Eqs. (5.1) and (5.2) can be

written in the form similar to that used for the SWE as follows.

First, a local water depth parameter h is introduced defined by

h = η + d, (5.3)

where d is the distance between the SWL and the bed surface elevation. Assuming

the bed surface remains constant in time this leads to

∂η

∂t
=

∂

∂t
(h − d) =

∂h

∂t
−

∂d

∂t
=

∂h

∂t
. (5.4)
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Using the redefined local water depth Nwogu’s Boussinesq equations can be

written in the form
∂

∂t
U +

∂

∂x
F(U) = Sb + Sd, (5.5)

where U and F(U) are the vectors of conserved variables and flux vector function

respectively, given by

U =

(

h

U

)

, F(U) =

(

huα

gh + 1
2u

2
α

)

, (5.6)

and

U = uα + zα

[

zα

2

∂2uα

∂x2
+

∂2

∂x2
(duα)

]

. (5.7)

Sb and Sd are vectors containing the terms that model bed topography and dis-

persion respectively, and are given by

Sb =

[

0 g
∂d

∂x

]T

, (5.8)

Sd = −
∂

∂x

[(

z2
α

2
−

d2

6

)

d
∂2uα

∂x2
+

(

zα +
d

2

)

d
∂2

∂x2
(duα) 0

]T

. (5.9)

In this form, Nwogu’s Boussinesq equations resemble the SWE in that there are

the hyperbolic inviscid terms on the left-hand side of Eq. (5.5) and the source terms

and dispersion terms on the right-hand side. Using this approach will allow for

a hybrid finite-volume/finite-difference scheme to solve the extended Boussinesq

equations of Nwogu, where the finite-volume method with MUSCL reconstruction

used in Chapter 2 can solve the inviscid terms, and a fourth-order finite-difference

scheme can be used to treat the source and dispersion terms. This approach was

used by Erduran et al. (2005) for Madsen and Sørensen’s Boussinesq formulation.

5.2 Numerical Scheme

The hybrid numerical scheme which is used to solve the extended Boussinesq

equations is based on the fourth-order accurate finite-difference scheme developed

by Wei and Kirby (1995) and presented in Chapter 4. The governing equations

are written so that all of the time derivative terms are on one side of the equation,

i.e.,
∂

∂t
U = E, (5.10)
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where

E = −
∂

∂x
F(U) + Sb + Sd. (5.11)

In this form, the governing equations can be solved using the Adams-Moulton/

Adams-Bashforth predictor/corrector method used in Chapter 4. The flux vector

function is discretised using finite-volumes with a fourth-order MUSCL recon-

struction. The source terms representing bed topography and dispersion terms

are discretised using finite-difference approximations. Therefore, the numerical

solver is a hybrid of finite-volume and finite-difference methods, hereafter referred

to as the hybrid Boussinesq solver.

5.2.1 Spatial Discretisation

The flux vector terms, F(U), are discretised using the finite-volume method dis-

cussed in Section 2.2 resulting in

∂

∂x
F(U) =

1

A

M
∑

m=1

F(UL
m,UR

m) · Lm, (5.12)

where A is the area of the finite-volume cell, M is the number of cell sides, Lm

is the length of the side m multiplied by the outward pointing normal vector,

F(UL
m,UR

m) are the solutions to local Riemann problems that occur at each cell

interface as a result of the MUSCL reconstruction process (Section 5.2.2).

The source terms and dispersion terms are discretised using centred finite-

difference schemes. The first-order derivatives are approximated to fourth-order

accuracy and the second-order derivatives to second-order accuracy

Sb i =
g

2∆x
(di+1 − di−1) , (5.13)

Sd i =
di

12∆x3
(fi−2 + 8fi−1 − 8fi+1 + fi+2) , (5.14)

where

fi =

(

z2
α i

2
−

d2
i

6

)

(uα i−1 − 2uα i + uα i+1) +
(

zα i +
di

2

)

[(duα)i−1 − 2(duα)i + (duα)i+1] . (5.15)
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5.2.2 MUSCL Reconstruction

The values of the conserved variables at the cell interfaces that are used in the

finite-volume discretisation of the flux terms are calculated using a fourth-order

MUSCL reconstruction (Section 2.2.2). Following from Yamamoto et al. (1998),

the fourth-order reconstruction is achieved via a van Leer limiter applied to values

calculated using a third-order minmod limiter. The interface values are calculated

using

UL
i+1/2 = Ui +

[

φ(r1)∆
∗Ui−1/2 + 2φ

(

1

r1

)

∆∗Ui+1/2

]

/6, (5.16)

UR
i+1/2 = Ui+1 −

[

2φ(r2)∆
∗Ui+1/2 + φ

(

1

r2

)

∆∗Ui+3/2

]

/6, (5.17)

where the function φ(ri) is the van Leer slope limiting function

φ(r1) =
r1 + |r1|
1 + r1

, (5.18)

where

r1 =
∆∗Ui+1/2

∆∗Ui−1/2
, r2 =

∆∗Ui+3/2

∆∗Ui+1/2
. (5.19)

The values of ∆∗U are calculated using a third-order minmod limiter approach

∆∗Ui+1/2 = ∆Ui+1/2 − (∆Ūi+3/2 − 2∆Ūi+1/2 + ∆Ūi−1/2)/6, (5.20)

where

∆Ūi−1/2 = minmod(∆Ui−1/2, ∆Ui+1/2, ∆Ui+3/2), (5.21)

∆Ūi+1/2 = minmod(∆Ui+1/2, ∆Ui+3/2, ∆Ui−1/2), (5.22)

∆Ūi+3/2 = minmod(∆Ui+3/2, ∆Ui−1/2, ∆Ui+1/2), (5.23)

and

∆Ui+1/2 = Ui+1 − Ui. (5.24)

The minmod limiter is given by

minmod(a, b, c) = s max[0, min(|a|, 2sb, 2sc)] (5.25)

where s = sign(b). Yamamoto et al. (1998) used the minmod limiter for both the

first- and third-order MUSCL reconstruction in their application to the Navier-
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Stokes equations. It was found by Erduran et al. (2005) that the use of the van

Leer limiter for the first-order reconstruction preserved the fourth-order terms.

Numerical experiments performed for this study also reinforced this conclusion

(Section 5.4.1).

Using the SGM approach presented in Section 2.4 the data reconstruction

described in Eqs. (5.16)–(5.25) is applied to the water surface elevation, η, as

opposed to the local water depth, h. Therefore, before the MUSCL reconstruction

is applied, the vector of conserved variables U is calculated using

U =

(

h + zb

uα

)

(5.26)

where zb is the bed surface elevation. After the MUSCL reconstruction has been

applied, the values of the conserved variables at the cell interfaces are recovered

by a simple rearrangement of Eq. (5.26).

5.2.3 Time integration

The integration of the governing equations in time is achieved with the third-order

Adams-Bashforth predictor and fourth-order Adams-Moulton corrector method

suggested by Wei and Kirby (1995) and presented in Section 4.3. For the rewritten

form of Nwogu’s Boussinesq equations used here, the scheme is

Un+1/2 = Un +
∆t

12

(

23En − 16En−1 + 5En−2
)

, (5.27)

Un+1 = Un +
∆t

24

(

9En+1/2 + 19En − 5En−1 + En−2
)

. (5.28)

The superscripts n + 1/2 and n + 1 denote the solution at the predictor and cor-

rector stages respectively and n, n − 1 and n − 2 are the values for the current

and previous time steps. The corrector stage is iterated until the values of the

conserved variables have converged to a given tolerance. For the numerical exper-

iments conducted here, the tolerance was given as 1 × 10−4 using Eq. (4.26) to

calculate the difference between successive iterations.

As discussed in Section 4.3, the solution for the velocities, uα, after the pre-

dictor and corrector stage requires the solution of a tri-diagonal system of linear

equations. This is performed using an efficient tri-diagonal solution algorithm

given in Section 4.3.2.
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5.3 Madsen and Sørensen’s Boussinesq Formu-

lation

In addition to Nwogu’s Boussinesq formulation, the extended Boussinesq formu-

lation by Madsen and Sørensen has also been used to model wave propagation,

run-up and overtopping. The solution method for Madsen and Sørensen’s equa-

tions has been developed by Erduran et al. (2005) and is similar to that described

in Section 5.1. The governing equations derived by Madsen and Sørensen (1992)

are

∂η

∂t
+

∂P

∂x
= 0, (5.29)

∂P

∂t
+

∂

∂x

(

P 2

h

)

+ gh
∂η

∂x
+ ψx = 0, (5.30)

where P = hu is the volume flux, u is the depth-averaged velocity (note that this

is different from the velocity uα used in the Nwogu Boussinesq formulation which

is the velocity at an arbitrary depth), h is the water depth, and ψx denotes the

higher order Boussinesq terms (i.e., the dispersion terms) given as

ψx = −
(

B +
1

3

)

d2 ∂3P

∂x2∂t
− Bgd3 ∂3η

∂x3
− d

∂d

∂x

(

1

3

∂2P

∂x∂t
+ 2Bgd

∂2η

∂x2

)

. (5.31)

Madsen and Sørensen suggested a value of B = 1/15 for optimum dispersion

properties when compared to linear wave theory.

Using the assumption that the bed surface elevation does not change over time

(∂d/∂t = 0), Eqs. (5.29) and (5.30) can be rewritten as follows

∂

∂t
U +

∂

∂x
F(U) = Sb + Sd, (5.32)

where

U =

(

h

U

)

, F(U) =

(

hu

hu2 + 1
2gh2

)

, (5.33)

and

U = hu −
(

B +
1

3

)

d2 ∂2

∂x2
(hu) −

d

3

∂d

∂x

∂

∂x
(hu). (5.34)

Sb and Sd are vectors containing the terms that model bed topography and dis-
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persion respectively and are given by

Sb =

[

0 gh
∂d

∂x

]T

, (5.35)

Sd =

[

0 Bgd2

(

∂3h

∂x3
+ 2

∂d

∂x

∂2h

∂x2

)]T

. (5.36)

The rewritten form of the Madsen and Sørensen formulation results in the

Boussinesq equations written as the SWE plus the higher order Boussinesq terms.

The numerical scheme described for the solution of the rewritten form of the

Nwogu Boussinesq equations is used to solve Eqs. (5.33)–(5.36). Where the ad-

ditional dispersion terms are not required in the solution, the vector of conserved

variables in Eq. (5.34) reverts to that of the SWE, U = (h hu)T , and the tri-

diagonal matrix for use in the solution of the velocities in the intermediate steps

is replaced by the identity matrix for the required rows.

5.3.1 Wave breaking

The rearrangement of the governing equations leading to Eqs. (5.5)–(5.9) allows

for the dispersion terms to be discarded and removed from the solution if required.

This means that discontinuities can be admitted into the solution because the ab-

sence of source terms reverts the governing equations back to a hyperbolic system

(see Appendix A). Therefore, in cases where wave breaking is likely to occur, the

dispersion terms are removed and the breaking wave is modelled as a discontinuity.

To determine which finite-volume cells require the inclusion of the dispersion

terms, Borthwick et al. (2005) used the following condition

−
∂

∂x
(hu) > γ

√

gd (5.37)

where γ is an empirical constant that determines when wave breaking occurs

depending on the shallow water wave celerity.

5.4 Numerical Results

The hybrid Boussinesq solver has been applied to model two standard test cases

similar to those used in the testing of the finite-difference solver in Chapter 4,

namely the propagation of a solitary wave along a channel and regular wave prop-

agation over a submerged bar. In the submerged bar test case, both the Nwogu
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and the Madsen and Sørensen Boussinesq formulations were compared against

the experimental observations made by Dingemans (1994). In addition, the hy-

brid solver has been used to model three sets of wave flume experiments testing

wave run-up and overtopping.

The first set of experiments modelled were conducted by Synolakis (1987)

who ran an extensive range of experiments looking at run-up on a sloping beach

of a solitary wave. The second set of experiments modelled were the Edinburgh

wave flume experiments described in Section 3.3, where the wave conditions tested

were such that impacting waves dominated at the seawall structure. Finally, the

hybrid solver was used to model a series of experiments conducted at Kansai

University, Japan (Mase et al., 2003) that measured overtopping volumes resulting

from overtopping of a seawall for a range of differing variables such as the crest

freeboard and water depth.

5.4.1 Solitary wave propagation

This solitary wave propagation test is a standard test of a numerical scheme to

accurately solve the dispersion terms within the governing equations. The solitary

wave retains its shape, amplitude and velocity because of an exact balance between

the dispersion that tends to flatten the wave and the non-linear effects that tend

to cause the wave to steepen and eventually break. This case was used to test

the fourth-order finite-difference solver presented in Chapter 4 and a detailed

description of the test conditions is given there.

For this test, the hybrid Boussinesq solver was used to solve Nwogu’s formu-

lation of the Boussinesq equations. The mesh consisted of the 450 metre channel

discretised into cells of width ∆x = 0.1 metres. The solitary wave was created

by explicitly stating values of η and uα at the left-hand boundary using values

calculated from Eqs. (4.59)–(4.65). The test was conducted for both the van Leer

and minmod limiters for the MUSCL reconstruction in Eqs. (5.16) and (5.17) to

test the observation made by Erduran et al. (2005) that the minmod limiter was

unsuitable for accurately resolving the fourth-order terms.

The solutions of water surface elevation at times, t = 40, 80, 120, 160 and 200

seconds, are given in Figs. 5.1 and 5.2 for the van Leer and minmod slope limiting

functions respectively. It is clear that the hybrid scheme using the van Leer lim-

iter produces solutions comparable with those of the fourth-order finite-difference

method used in Chapter 4. A closer examination of the solution shows that the

non-oscillatory behaviour of the MUSCL scheme reduces the high frequency os-
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cillations in the tail of the solitary wave that were present in the finite-difference

solution. The solution using the minmod limiter, however, clearly shows that the

solitary wave solution is asymmetric and that the balance between the dispersion

and non-linear effects has not been retained by the numerical solver.

0 50 100 150 200 250 300 350 400 450

x (m)

η = 0 m

η = 0 m

η = 0 m

η = 0 m

η = 0 m t = 40s

t = 80s

t = 120s

t = 160s

t = 200s

Figure 5.1: Solitary wave propagation: solution plots of the water surface for
times, t = 40, 80, 120, 160 and 200 seconds using the van Leer limiter.

5.4.2 Regular wave propagation over a submerged bar

The hybrid scheme was used to solve both Nwogu’s and Madsen and Sørensen’s

Boussinesq formulations for the regular wave propagation over a submerged bar

test used in Section 4.7.5 for the finite-difference solver. As the waves propagate

up the 1:20 front slope they begin to steepen due to the effects of the varying

bed topography. The 1:10 back slope causes a breaking up into higher frequency

waves which travel at different speeds. A more detailed description can be found

in Section 4.7.5 or (Dingemans, 1987).

For the purpose of comparison, both the Nwogu and Madsen and Sørensen

Boussinesq formulations were used over identical configurations. The 23 metre

wave flume (see Fig. 4.15) was discretised into finite-volume cells with ∆x = 0.02

metres. Regular waves were generated using the source function method described

in Section 4.5 with sponge layers at both the left- and right-hand boundaries to
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Figure 5.2: Solitary wave propagation: solution plots of the water surface for
times, t = 40, 80, 120, 160 and 200 seconds using the minmod limiter.

absorb all energy from the outward propagating waves (see Section 4.6). The test

case was conducted for all three wave configurations given in Table. 4.1.

The water surface elevations recorded at depth gauges placed 2.0, 5.7, 10.5,

13.5, 15.7 and 19.0 metres from the wave maker boundary are presented in Figs. 5.3

– 5.5 for wave configurations (a) through (c) respectively. For all three configu-

rations, the wave gauges prior to the breakup into higher frequency waves show

good agreement with the experimental water surface (recall that the location of

the second gauge was mistakenly specified at 5.7 metres from the wave maker

boundary causing the phase error). The gauges at 15.7 and 19.0 metres show that

the Madsen and Sørensen formulation performs better than Nwogu’s formulation

for this hybrid solver when compared to the experimental results. For wave config-

uration (b) where waves form spilling breakers on the plateau, neither formulation

manages to accurately resolve the water surface elevation after the breakup of the

wave train.

The submerged bar test has demonstrated that the Madsen and Sørensen

formulation of the Boussinesq equations is more conducive to the hybrid finite-

difference/finite-volume scheme suggested by Erduran et al. (2005) than the Nwogu

formulation. In addition, the Madsen and Sørensen formulation uses a depth av-

eraged velocity as opposed to a velocity specified at an arbitrary depth in Nwogu’s
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Figure 5.3: Regular wave propagation over a submerged bar: comparisons between
the water surface elevations for the experiment (thick line), Nwogu’s formulation
(thin line) and Madsen and Sørensen’s formulation (dashed line) for gauges placed
at (top to bottom) x = 2.0, 5.7, 10.5, 13.5, 15.7, 19.0 metres from the wave paddle
for test configuration (a).
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Figure 5.4: Regular wave propagation over a submerged bar: comparisons between
the water surface elevations for the experiment (thick line), Nwogu’s formulation
(thin line) and Madsen and Sørensen’s formulation (dashed line) for gauges placed
at (top to bottom) x = 2.0, 5.7, 10.5, 13.5, 15.7, 19.0 metres from the wave paddle
for test configuration (b).
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Figure 5.5: Regular wave propagation over a submerged bar: comparisons between
the water surface elevations for the experiment (thick line), Nwogu’s formulation
(thin line) and Madsen and Sørensen’s formulation (dashed line) for gauges placed
at (top to bottom) x = 2.0, 5.7, 10.5, 13.5, 15.7, 19.0 metres from the wave paddle
for test configuration (c).
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formation, meaning that the dispersion terms within the governing equations can

be disregarded where the need arise. For example, this is the case when wave

breaking is likely to occur, or where the bed surface elevation is greater than the

water surface elevation (d < 0). Numerical experience showed that the hybrid

solver when applied to the Nwogu formulation exhibited spurious oscillations at

the boundary where the dispersion terms were removed, and whilst the scheme

remained stable, it is unsuitable for use when there is an abrupt change between

a velocity at an arbitrary depth and a depth-averaged velocity. It is for these

reasons that for all following test cases and experiments conducted in this study,

the Madsen and Sørensen Boussinesq formulation was used.

5.4.3 Solitary wave run-up on a sloping beach

Solitary wave run-up is used to help provide predictions of run-up and inunda-

tion resulting from tsunami events. Tsunamis are long waves that are caused by

impulsive geophysical events. Synolakis (1987) conducted an extensive study into

solitary wave run-up including wave flume experiments using a range of different

values for the water depth and amplitude. Borthwick et al. (2005) used the data

provided by Synolakis’ experiments to test their second-order finite-volume based

Boussinesq solver. The fourth-order hybrid Boussinesq solver has been applied

to model Synolakis’ experiments and the the run-up values compared against the

experimental values to assess the applicability of the hybrid Boussinesq solver for

modelling wave run-up.

d

H

maximum run-up

R

cot(β) = 19.85cot(β) = 19.85

Figure 5.6: Solitary wave run-up on a sloping beach: diagram of wave flume.

The numerical wave flume used here consisted of a flat bed channel with a

1:19.85 sloping beach (Fig. 5.6) placed such that the toe of the slope is 10 metres

from the left-hand boundary. The solitary waves were created as an initial value
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problem within the domain using the definitions of η and u given by

η(x, 0) = Hsech2

[

√

3H

4d3
(x − xs)

]

, (5.38)

u(x, 0) = η(x, 0)

√

g

d
, (5.39)

where H is the height of the solitary wave above the SWL, d is the water depth,

xs is the centre of the solitary wave and g = 9.81 ms−2 is the acceleration due

to gravity. The run-up, R, is defined by the maximum vertical elevation above

the SWL reached by the water on the beach. The solitary waves were generated

for values of H/d in the range 0.009 ≤ H/d ≤ 0.462. The solution domain was

discretised using a spatial step of ∆x = 0.02 metres. A wave breaking parameter

of γ = 0.3 was used and the bottom friction was ignored.

The run-up values recorded by Synolakis tended towards two distinct asymp-

totic forms depending upon whether the solitary wave had broken or not, given

by
R

d
≈ α

(

H

d

)β

, (5.40)

where α and β are empirical coefficients. The values of these coefficients are α =

(11.0, 1.12) and β = (1.22, 0.59) for the lower and upper asymptotes respectively

(Borthwick et al., 2005). The run-up values for both the experiments conducted

by Synolakis and the hybrid Boussinesq solver have been compared against the

asymptotic forms given in Eq. (5.40) (Fig. 5.7). In general, the numerical results

follow the behaviour of the experimental results but the numerical model tended

to over-predict the run-up values. This can be seen more clearly by examining the

plot of the relative errors between the experimental and numerical run-up values

(Fig. 5.8). The relative errors between the predicted values and the experimental

values are calculated using

Rerr =
fpred − fexp

fexp
, (5.41)

where fpred and fexp are predicted and experimental values respectively.

Fig. 5.8 shows that where the dimensionless wave heights are small, i.e., H/d <

0.1, the relative errors range between -0.02 and 0.41 with the majority of the values

indicating an over-prediction of the run-up. This shows that the numerical model

struggles to accurately model wave run-up for very small waves. This shortfall is

not of much concern because small waves and the run-up and overtopping that
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Figure 5.7: Solitary wave run-up on a sloping beach: comparisons between dimen-
sionless run-up values for the results of the experiments of Synolakis (1987) and
the hybrid Boussinesq solver.

result from interactions of small waves are considered insignificant from an engi-

neering design standpoint. In addition, it should also be noted that the value of

the minimum wet depth parameter, δ, would have an influence on the accuracy

of the run-up predictions where very small water depths are concerned. This is

because for small amplitude waves, the volume contained within the closest ‘wet’

cell to the wet/dry boundary would increase as the value of δ increases. If this

volume is too large, the computed momentum will cause an over-prediction of

the run-up. For larger values of H/d, the relative error ranges between -0.18 and

0.10 indicating that the hybrid solver can model wave run-up, including where the

waves are breaking, to a reasonable degree of accuracy.
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Figure 5.8: Solitary wave run-up on a sloping beach: scatter plot showing the
relative errors between R/d for the experiments of Synolakis (1987) and the hybrid
Boussinesq solver.

5.4.4 Numerical simulation of the Edinburgh wave flume

experiments

An examination of the applicability of the shallow water equations for modelling

overtopping resulting from breaking wave interaction with a near vertical seawall

is presented in Chapter 3 and Shiach et al. (2004). It was shown that a depth-

averaged model could provide good predictions of overtopping for impacting waves

where h∗ ≥ 0.075 (see Section 3.2.2 for the definition of h∗). The SWE model,

however, was only applied to a region close to the seawall to ensure that the wave

conditions within the computational domain are conducive to shallow water (i.e.,

d/L ≤ 1/20). Although only a reduced domain was modelled, the numerical model

over-predicted the wave heights due to premature breaking of waves caused by the

boundary condition used.

The dispersion properties of the extended Boussinesq equations enable the

full Edinburgh wave flume to be modelled and not just the reduced domain used

in the SWE based model. Here the hybrid solver has been applied to Madsen

and Sørensen’s Boussinesq formulation to model the Edinburgh experiments. The

waves were internally generated by use of the source function method (see Sec-

tion 4.5) with the amplitude given by the depth gauge placed at 11.21 metres from
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the seawall. A sponge layer was used at the incident boundary to dampen any

waves that are reflected from the seawall. Initially, dispersion terms were included

in the governing equations throughout the domain except where the bed surface

elevation is greater than the water surface elevation (d < 0). The use of dispersion

terms during the simulation was dependent upon the condition given in Eq. (5.37).

Where this condition was violated, the dispersion terms were ignored and the gov-

erning equations reverted to the SWE (dispersion terms were also ignored on top

of the seawall structure). A simple transient flow boundary condition, Eq. (2.25),

was applied to the right-hand boundary. The solution domain was discretised

using a uniform mesh with spacing ∆x = 0.02 metres.

The numerical water surface elevation was recorded at gauges placed at 1.0,

2.0, 3.0, 4.25, 5.5 and 8.0 metres away from the seawall by linearly interpolating

between the two closest finite-volume cells. The overtopping volumes (m3 per

metre of seawall) were calculated using

Q = hu∆t. (5.42)

The water surface elevations for the six depth gauges recorded were compared to

the experimental water surface over the intervals t = [10, 50] and t = [50, 100]

seconds in Fig. 5.9. The numerical surface closely resembles the experimental

surface for all six gauges, showing that the hybrid Boussinesq solver along with

the source function method can accurately model waves from a given input signal.

The significant wave heights (Hs) for the physical experiments and the values

recorded from the hybrid solver have been calculated (Tables C.3 and C.5) and

directly compared in a scatter plot (Fig. 5.10). Most of the points lie on or

close to y = x indicated; and for all of the depth gauges, the hybrid model has

accurately modelled the wave propagation and reflection from the seawall. There

are some notable exceptions where a population of points lie under the y = x

line, indicating that the numerical model has under-predicted the wave heights.

Closer inspection of the data shows that the runs of the experiments where this

under-prediction is occurring are where the incident wave period is less than 1

second (runs 11–15), giving a depth to wavelength ratio of d/L > 0.5 and hence,

beyond the range of applicability for the extended Boussinesq equations. The

numerical model recorded zero overtopping for all of the 15 runs of the Edinburgh

experiments, suggesting that there is a limit to the steepness of the seawall slope

when using a fourth-order MUSCL scheme.
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Figure 5.9: Numerical simulation of the Edinburgh wave flume experiments: water
surface comparisons between the experimental values (red) and the hybrid solver
(green) over the times intervals t = [10, 50] (top) and t = [50, 100] (bottom)
seconds. Gauges placed (from top to bottom) 1.0, 2.0, 3.0, 4.25, 5.5 and 8.0
metres from the seawall.
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Figure 5.10: Numerical simulation of the Edinburgh wave flume experiments:
scatter plot showing the significant wave heights recorded at each depth gauge for
the Edinburgh experiments and the hybrid solver.

5.4.5 Random wave overtopping

The final set of experiments that have been modelled using the hybrid Boussinesq

solver are experiments that were conducted at Kansai University, Japan. The

Kansai experiments observed the volumes of overtopping water resulting from

random wave interaction with shallow sloped seawalls. The wave flume used for

the Kansai experiments is defined in Fig. 5.11. The bathymetry consisted of

a shallow foreshore slope upon which was placed a steeper slope representing a

seawall. The position of the seawall slope was dependent upon the water depth,

d, and the depth of the water at the toe of the structure, dtoe. The height of

the seawall was given by the crest freeboard, Rc. The numerical experiment was

run for 1200 seconds, with the random waves generated by sampling from the

JONSWAP spectrum for a given significant wave height, Hs. The wave period

was set at T = 1.0 seconds for each run of the experiment.

In all, 83 runs were chosen for comparison in this study. The values for the

steepness of the foreshore and seawall slopes, the crest freeboard and the significant

wave heights are summarised in Table 5.1. The majority of the experiments were
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Table 5.1: Random wave overtopping: experimental values

Variable Values
Foreshore slope 1:30, 1:10
Seawall slope 1:10, 1:7, 1:5, 1:3, 1:4/3
Rc 0.005, 0.015, 0.025, 0.035, 0.0625
Hs 0.0156, 0.0312, 0.0468, 0.0625, 0.0781

conducted with a foreshore slope of 1:30, with the exception of a 1:10 foreshore

slope used where the the seawall slope was 1:10. The specific values for each of

the 83 runs of the experiment used here for the steepness of the foreshore slope

and the seawall slope, d, dtoe, Rc and Hs are given in Tables C.7–C.9.

H

d

RcRc

dtoedtoe

Seawall slope

Foreshore slope

Figure 5.11: Diagram of the Kansai University wave flume.

The overtopping discharge volumes collected by the Kansai experiments have

been compared with the empirical models of Owen (1980), van der Meer and

Janssen (1995) and Hedges and Reis (1998) and the SWE based numerical model

of Hu et al. (2000) in Reis et al. (2005) for a range of different seawall slope

configurations. It was found that, in general, the empirical models over-predicted

the dimensionless discharges with Hedges and Reis’ semi-empirical H&R model

providing better overtopping predictions. The numerical model used by Hu et al.

(2000) was the same as that presented in Chapter 2 for the inviscid SWE, with

the treatment of the source terms achieved by using a simple first-order implicit

Euler method combined with the Hancock scheme by use of operator splitting.

The incident wave boundary was located approximately one wavelength seaward

from the toe of the seawall slope. A non-uniform grid was used with a finer mesh

applied near the seawall slope.

The hybrid Boussinesq solver has been used to model the Kansai overtopping
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experiments. The solution domain consisted of a wave flume 14 metres long with

the wave generating source function located 10 metres seaward from the toe of

the foreshore slope. The solution domain was discretised using a uniform mesh

with mesh spacing ∆x = 0.02 metres. A sponge layer was used at the incident

boundary to absorb any waves reflected back from the seawall past the source

function. The right-hand boundary was the simple transient flow boundary used

in the modelling of the Edinburgh experiments. The random waves were generated

by the source function method for the required values of Hs using the JONSWAP

spectrum with a peak enhancement parameter of 0.3. As with the modelling of

the Edinburgh experiments, the use of the dispersion terms within the governing

equations was determined by the condition given in Eq. 5.37, with a wave breaking

parameter of γ = 0.3 used.

The dimensionless values of the freeboard and discharge volumes are compared

for each value of the steepness of the seawall slope in Figs. 5.12–5.14. The general

trend shows that although the hybrid scheme over-predicts the overtopping vol-

umes, the steeper the seawall slope the better the numerical predictions. There

is an exception to this conclusion when the seawall slope is very shallow (i.e.,

1:10). In this case, the numerical results under-predict the overtopping volumes.

It should be noted that the slope of the foreshore in this case was the same as

that for the seawall and the absence of the bend in the bathymetry may influence

the wave breaking and run-up on the seawall slope and therefore the overtop-

ping. More research on using the hybrid Boussinesq solver for overtopping on

bathymetry of this type is required.

The absolute relative error between the dimensionless discharges of the phys-

ical experiments and the numerical model are plotted against the corresponding

dimensionless freeboard, R∗, in Fig. 5.15. The majority of the values show that

the numerical model predicts the overtopping to within an absolute relative error

of 1, which is well within the accepted accuracy for empirical overtopping formulae

noted in Besley (1999).
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Figure 5.12: Random wave overtopping: comparisons of the dimensionless overtop-
ping discharges (Q∗) of the Kansai data and the hybrid Boussinesq solver against
the dimensionless freeboard (R∗) for seawall slopes 1:10 (top) and 1:7 (bottom).
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Figure 5.13: Random wave overtopping: comparisons of the dimensionless overtop-
ping discharges (Q∗) of the Kansai data and the hybrid Boussinesq solver against
the dimensionless freeboard (R∗) for seawall slopes 1:5 (top) and 1:3 (bottom).
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Figure 5.14: Random wave overtopping: comparisons of the dimensionless overtop-
ping discharges (Q∗) of the Kansai data and the hybrid Boussinesq solver against
the dimensionless freeboard (R∗) for seawall slope 1:4/3.
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hybrid Boussinesq solver (Q∗
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5.5 Chapter Summary

A hybrid finite-volume/finite-difference numerical solver for the extended Boussi-

nesq equations was presented in this chapter. The numerical solver described in

Chapter 4 was based on a finite-difference implementation and therefore the so-

lution domain was limited to a uniform Cartesian mesh. The hybrid scheme was

originally developed by Erduran et al. (2005), where the extended Boussinesq for-

mulation of Madsen and Sørensen (1992) was rewritten so that it is in the form

of the shallow water equations plus additional terms that model dispersion. This

scheme has been applied to the extended Boussinesq formulation of Nwogu (1993)

here. The governing equations were rewritten so that local water depth is a so-

lution variable replacing the water surface elevation. This is made possible by

assuming the bed surface elevation does not change significantly over time and

the equations are rewritten using simple algebra.

The hybrid solver consists of the finite-volume method that is presented in

Chapter 2 to solve the SWE terms within the rewritten form of the extended

Boussinesq equations. The values of the conserved variables at each cell interface

are calculated using a fourth-order MUSCL reconstruction method. The source

and dispersion terms within the governing equations are modelled using central

difference formulae where fourth-order accurate differences are used for the first-

and third-order derivatives. The use of the fourth-order MUSCL scheme and cen-

tral differences ensures that the higher-order Boussinesq terms are retained as

noted by Wei and Kirby (1995). The governing equations are integrated through

time using the third-order Adams-Bashforth, fourth-order Adams-Moulton pre-

dictor/corrector method used in the finite-difference solver in Chapter 4.

The hybrid Boussinesq solver was validated over a range of standard test cases.

The extended Boussinesq equations of Nwogu were used to calculate the solu-

tions for the solitary wave propagation test used previously to validate the finite-

difference solver. Both the Nwogu, and Madsen and Sørensen extended Boussinesq

equations were used to model the regular wave propagation over a submerged bar

test case. The Madsen and Sørensen formulation was then selected to exam-

ine wave run-up and overtopping in three different sets of experiments: solitary

wave run-up, violent wave run-up and overtopping, and random wave run-up and

overtopping. To the author’s knowledge this is the first time that an extended

Boussinesq-type model has been used to examine non-solitary wave run-up and

overtopping.



Chapter 6

Conclusions

The aim of this study was to examine numerical modelling of water flow in near

shore coastal regions. Traditionally, the design of structures that help prevent

damage to property and transport infrastructure have been improved by conduct-

ing physical experiments in a wave flume where the sea conditions are replicated,

and measuring devices record the waves and overtopping volumes. Conducting

these experiments is not a trivial matter due to the time and expense of setting

up the wave flume, calibrating the measuring devices and running the experiments.

Numerical models can represent a significant saving in the times and costs associ-

ated with conducting physical experiments. Validation of these numerical models

is achieved by comparing the values calculated by the numerical model against

observed values from the physical experiments.

In order to make numerical models a feasible alternative to physical experi-

ments, the computational power required should not exceed the hardware capa-

bilities of computers that are currently available on the market. It is for this

reason that only depth-averaged flow models were chosen in this study, whereas

numerical models based on the full Navier-Stokes equations are not suitable con-

sidering current computing technology. The depth-averaging process applied to

the Navier-Stokes equations results in the shallow water equations (SWE), a set

of governing equations that can model water flow where the water is considered

shallow and the vertical velocity negligible. The definition of shallow water is

where the ratio of water depth to wavelength is in the range d/L ≤ 1/20. The

SWE are hyperbolic in nature which means that discontinuities can be admitted

into the solution so that breaking waves can be modelled as a discontinuity.

AMAZON, an existing numerical model based on the SWE was presented in

Chapter 2 (Mingham and Causon, 1998). This model uses a high-resolution finite-

volume method to solve the SWE. Spatial discretisation is achieved by dividing
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the solution domain into finite-volume cells, where the solution variables are calcu-

lated at the centre of each cell by integrating around the perimeter. The advantage

of using a finite-volume discretisation is that the solution domain is not limited to

orthogonal boundaries. The integration of the governing equations through time

is calculated using the Hancock scheme, a Godunov-type second-order accurate

predictor/corrector scheme. Godunov-type solvers require the values of the con-

served variables at the cell interfaces which are calculated here using a Monotonic

Upwind Schemes for Conservation Laws (MUSCL) approach. The gradients of the

conserved variables across each cell are limited to ensure that there are no under-

or over-shoots at the cell interfaces that can cause oscillations in the solution by

use of a slope limited function. The corrector stage of the Hancock scheme requires

the solution of local Riemann problems at each cell interface caused by the slope

limiting process. The Riemann solver developed by Harten, Lax, and van Leer

(1983) (HLL) was used to solve the local Riemann problems. The AMAZON nu-

merical model was validated against a one-dimensional dam break problem. This

is a standard test case for solvers of hyperbolic equations as a bore wave forms

that tests the numerical scheme’s ability to treat discontinuities. The solutions

using three different slope limiting functions were compared against the analytical

solutions for both the wet bed and dry bed case. Of the three slope limiters, it

was found that the van Leer limiter provided the best solution and for this reason

was chosen for all subsequent calculations using this numerical model.

The treatment of the source terms that model the bed topography was achieved

using the Surface Gradient Method (SGM) (Zhou et al., 2001). The SGM is a

novel method where the water surface elevation as opposed to the water depth

is used as a basis for the MUSCL reconstruction process. This means that the

differences between the spatial discretisation of the conserved variables and the

bed surface do not affect the solution. The implementation of the SGM to the

AMAZON solver requires little alteration to the existing code and the additional

computational effort is negligible. The SGM is fully conservative as long as a

centred difference is applied to the bed surface. The SGM solver was validated

against a number of test cases examining tidal wave flow over regular and irregular

bed surfaces; subcritical, supercritical and transcritical flow over a bump in the

bed topography; a quasi-stationary case examining the SGMs ability to model

small perturbations in the water surface and a surge wave crossing a discontinuity

in the bed surface.

The AMAZON-SGM solver was used to model a series of wave flume experi-

ments conducted at Edinburgh University in Chapter 3. These experiments were
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designed to reproduce violent overtopping events at a seawall where breaking waves

dominate at the structure. Due to the limit of applicability of the SWE, a reduced

solution domain of 2.0 metres from the seawall was modelled. This corresponds

to a typical depth to wavelength ratio of d/L ≈ 0.15. The waves were generated

at the incident wave boundary by explicitly stating the water surface recorded by

the corresponding depth gauge from the experiments. The value of the velocity

at the incident wave boundary was assumed to be that of the first computational

node in from this boundary. A previous study has shown that this treatment pro-

vides values for the water surface and velocity which are 99% and 85% accurate,

respectively. A comparison of the wave surface elevation recorded at the gauge

placed 1.0 metre from the seawall showed that the SWE based model tended to

over-predict the wave heights. This is due to the fact that for part of the solution

domain, the shallow water condition is violated, causing the waves to shoal and

break prematurely. Analysis of the overtopping discharge volumes showed the the

shallow water model can predict violent overtopping events to within a relative

error value of 20% where the waves are not severely impacting at the structure

(h∗ > 0.075). This research has been published in Coastal Engineering (Shiach

et al., 2004).

The main disadvantage of a SWE based model as evident in the work discussed

in Chapter 3, is that only near shore wave propagation can be modelled or where

the shallow water condition is retained, e.g., tsunami wave modelling. For a depth-

averaged model to be used as a tool for coastal engineers, it needs to model wave

propagation in deeper water. Another system of depth-averaged equations that

include dispersion terms enabling deeper water to be modelled is the class of

extended Boussinesq equations. Chapter 4 presented the extended Boussinesq

equations derived by Nwogu (1993). The derivation of the Nwogu formulation

assumes that the horizontal velocity follows a quadratic profile in the vertical

direction. This leads to a system of equations where the velocity can be calculated

at an arbitrary depth depending upon a free parameter α. The value of α therefore

influences the dispersion properties and Nwogu suggested an optimal value of

α = −0.390 by comparing the linear dispersion properties of the system with

the linear dispersion relation. The extended Boussinesq equations of Nwogu are

applicable in the range d/L < 0.35.

The solution method chosen to solve Nwogu’s Boussinesq equations was one

that was first suggested by Wei and Kirby (1995). This was a finite-difference

scheme that uses second- and fourth-order difference stencils for the second- and

first-order spatial derivatives respectively. This ensures that the truncation errors
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of the finite-difference method do not cancel out the dispersion terms present

in the governing equations. Time integration was achieved using a third-order

Adams-Bashforth predictor and a fourth-order Adams-Moulton corrector. The

second-order treatment of the spatial derivatives leads to a tri-diagonal system

that is solved at each time step for the calculation of the horizontal velocities. Wei

and Kirby suggested inverting the coefficient matrix before the solution routines

are called. However, it was found that the use of an efficient tri-diagonal solution

routine significantly improved the computational speed of the solver, despite the

need to calculate the solution at every time the predictor/corrector stages are

invoked. Wave generation was achieved using a source function method applied to

a range of computational nodes, as opposed to a single node, as this would cause

instabilities in the solution domain because a non-staggered mesh is being used.

The treatment of transient flow and solid wall boundary conditions is discussed,

where the former requires the application of sponge layers that gradually remove

energy from the system to prevent reflected waves from propagating back into the

solution domain.

Solitary wave propagation was chosen to validate the numerical solver and

demonstrate the dispersion properties of the governing equations. Solitary waves

maintain their shape and velocity due to an exact balance between the non-linear

terms that cause the wave to steepen, and the dispersion terms that cause the

wave to spread out. The solution of the solitary wave propagation test showed

that the finite-difference scheme accurately solved Nwogu’s Boussinesq equations

and the dispersion was retained. There were high frequency oscillations evident

behind the wave train but these were too small to cause significant concerns with

the solver. The source function method for generating waves, the application

of the sponge layers for transient flow boundary conditions and the solid wall

boundary conditions were tested using single and multiple period monochromatic

wave tests. The source function method was shown to produce the required wave

forms appropriate for the limit of applicability of the governing equations. The

width of the source function was half the wavelength of the wave generated, as

suggested by Wei et al. (1999). Although a narrow source function is desirable, it

was found that using a narrower source function caused oscillations in the solution.

The sponge layers absorbed all energy into the transient flow boundary condition,

as shown by the quasi-stationary behaviour of the monochromatic wave test. The

solid wall boundary condition reflected all energy and caused standing waves to

form at double the height of the incident waves generated by the source function.

The final test performed with the finite-difference solver was to model a series
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of experiments conducted by Beji and Battjes (1993) and used by Dingemans

(1994) to compare various Boussinesq models. The experiment consists of regular

wave propagation over a submerged trapezoidal bar where the waves shoal as they

travel up the front facing slope and separate into multiple component waves as the

backward slope is encountered. This is a good test for Boussinesq models because

the disintegration of the wave train occurs due to dispersion. Comparisons between

the experimental and numerical water surface elevations showed that the finite-

difference Boussinesq solver could accurately model the wave steepening and the

separation and propagation of the component waves. The finite-difference solver,

whilst being able to accurately solve the extended Boussinesq equations, does not

have the advantage that a finite-volume solver has in that non-orthogonal solution

domains can be modelled.

One of the aims of this study was to develop a numerical model that can

be integrated into the existing AMAZON suite of flow solvers, in particular the

Cartesian cut-cell method used for modelling irregular boundaries in the solution

domain. Therefore, a finite-volume based Boussinesq solver would be preferable

as opposed to a finite-difference solver. A hybrid finite-volume/finite-difference

solver is presented in Chapter 5.

Erduran et al. (2005) developed a numerical solver for the extended Boussinesq

formulation of Madsen and Sørensen (1992). The governing equations were re-

written so that the water depth replaced the water surface elevation as a solution

variable. The re-written form of Madsen and Sørensen’s Boussinesq equations

are essentially the SWE plus some additional dispersion terms. Therefore, the

finite-volume solver presented in Chapter 2 was applied to solve the SWE terms

and the fourth-order finite-difference stencils used in the finite-difference solver

presented in Chapter 4 was used to discretise the additional dispersion terms.

The calculation of the variables at the cell interfaces for use in the finite-volume

solver was achieved using a fourth-order MUSCL reconstruction. Time integration

was achieved using the same Adams third-order predictor, fourth-order corrector

method suggested by Wei and Kirby.

This approach was used to solve Nwogu’s extended Boussinesq formulation

in Chapter 5 which has not previously been examined. The hybrid model used

the solitary wave test to compare the solutions using the van Leer and minmod

slope limiting functions. It was found that the hybrid scheme could accurately

resolve the solitary wave profile when using the van Leer limiter. The use of the

minmod limiter in the hybrid solver did not retain the dispersion in the governing

equations which was noted in Erduran et al. (2005). It was also found that the
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hybrid solver presented an improvement over the finite-difference solver where the

high frequency oscillations behind the solitary wave were no longer present due

to the non-oscillatory feature of MUSCL schemes. The hybrid scheme was also

applied to the monotonic wave propagation over a submerged bar test case used

to test the finite-difference solver. The extended Boussinesq equations of Nwogu

and Madsen and Sørensen were compared with the experimental water surface

elevations. The Madsen and Sørensen extended Boussinesq equations provided

marginally better results than the Nwogu formulation. However, neither formula-

tion could accurately resolve the break-up of the wave train after the submerged

bar for configuration (c) where spilling breakers were observed.

The Madsen and Sørensen formulation was then chosen to model wave run-up

and overtopping experiments. The reason for this choice was that the additional

dispersion terms can be removed from the solution where the need arises, for ex-

ample, where wave breaking is likely to occur or the bed surface elevation is greater

than the wave surface giving a negative water depth. In programming terms, the

removal of the dispersion terms can, in theory, be achieved with the Nwogu formu-

lation. However, as the horizontal velocity is assumed to be at an arbitrary depth

and not a depth-averaged velocity, high-frequency oscillations occurred where the

additional terms were removed.

The first set of experiments modelled with the hybrid solver applied to the

Madsen and Sørensen Boussinesq equations was solitary wave run-up on a sloping

beach. Solitary wave run-up was the focus of an extensive study by Synolakis

(1987) where a range of non-breaking and breaking solitary waves were generated

and the maximum run-up was recorded. It was found that the run-up values

followed two asymptotic forms depending upon whether the wave had broken or

not. The hybrid Boussinesq solver accurately predicted the run-up values where

the solitary wave height to depth ratio was larger than 0.1. Where smaller waves

were generated, the numerical model tended to over-predict the run-up values to

a relative error in the range −0.05 ≤ R ≤ 0.45. This is assumed to be because the

height of the waves modelled is close to the minimum wet depth parameter used

by the numerical solver.

The violent wave overtopping experiments conducted at Edinburgh University

and used for a modelling test case for the SWE solver in Chapter 2, were used

to test the hybrid Boussinesq solver for modelling overtopping of near vertical

seawalls. The solution domain modelled the whole flume from the depth gauge

closest to the wave paddle, which was used as the incident wave boundary, to

beyond the seawall. A comparison of the water surface profiles for all 6 depth
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gauges showed that the hybrid scheme accurately modelled wave propagation with

the numerical water surface closely resembling the experimental water surface. An

analysis of the significant wave heights showed that for cases where the extended

Boussinesq equations are applicable, the numerical model produced the expected

values. It is clear from this analysis that the source function method applied to

generate waves from a given input function is valid as long as the approximate

wavelength is known. Therefore random waves can also be generated using this

method.

The hybrid model produced zero overtopping for all 15 runs of the Edinburgh

experiments. This is a concern as it suggests that the hybrid scheme cannot

model near vertical sloping structures as well as the SWE based model. There are

three possible reasons for the absence of overtopping when using the hybrid model

suggested here by the author:

(i) the dispersion terms in the governing equations were not removed from the

calculations at the right moment to best model breaking wave interaction

with the seawall;

(ii) there were an insufficient number of computational cells used for modelling

flow on the seawall slope;

(iii) there is a limit to the slope angle for which the fourth-order solver can

accurately model run-up and overtopping.

The suggestion made in (i) would result in a propagating wave not breaking soon

enough and therefore the interaction with the seawall not producing as large an

overtopping event as it should. Performing repeated runs of the experiments with

different values of the wave breaking parameter γ would show whether this was

the case. If there was an insufficient number of computational cells placed on the

seawall slope, as suggested in (ii), then the fourth-order MUSCL reconstruction

that requires values from cells i − 2 to i + 3 for the calculation of the conserved

variables at cell interface i+1/2 could prevent any flow past the top of the seawall

where the bed topography abruptly changes direction. It should be noted that the

second-order MUSCL reconstruction used in the SWE model did not experience

this problem (Shiach et al., 2004). The final suggestion, given in (iii), causes

the value of the gradient across the last ‘wet’ cell to be very large. The slope

limiting process will then reduce this gradient significantly to prevent oscillations

and therefore alter the mass and momentum of the leading ‘wet’ cell. The limit

to the steepness of the slope for which a MUSCL based AMAZON scheme can be
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applied to model run-up is not presently known. Due to the constraints of time,

none of the three suggestions given above were examined here and are left as the

focus of a future study.

The final set of experiments that were modelled using the hybrid Boussinesq

solver was based upon a series of experiments conducted at Kansai University,

Japan, studying random wave run-up and overtopping of various sloping struc-

tures. The data from the experiments was used in a study by Reis et al. (2005) to

compare various empirical, semi-empirical formulae and a SWE based numerical

model. 83 runs of the experiments were modelled each consisting of 1200 seconds

of simulated random waves. The solution domain consisted of a one-dimensional

channel with the wave generating source function located 10 metres from the toe of

the seawall. The seawall slopes modelled had steepness ratios of 1:10, 1:7, 1:5, 1:3

and 1:4/3. The waves generated were sampled from the JONSWAP spectrum for

significant wave height values of Hs = 0.0152, 0.0312, 0.0468, 0.0625 and 0.0781

metres. An analysis of the dimensionless values for the crest freeboard and the

discharge volume was conducted for each of the different slope configurations. It

was found that the steeper the seawall, the better the numerical overtopping pre-

dictions. This suggests that the numerical model did not accurately model the

wave run-up on the shallower sloping structures resulting in a large over-prediction

of the overtopping.

6.1 Further Work

This section contains details of further work that has been suggested by the re-

search conducted in this study which due to time constraints has not been included

here.

Boussinesq modelling of overtopping

In this study, the hybrid Boussinesq solver was used to model wave run-up and

overtopping of seawalls of steepnesses in the range 1:10 to 1:4/3 (Chapter 5). It was

found that, in general, as the seawall slope steepness increased, the overtopping

volumes that were predicted by the numerical model more closely resembled the

overtopping volumes observed in the physical experiment. However, it was also

found that when modelling an extreme seawall slope no overtopping was observed

in the numerical model. There is a need to test the AMAZON-Hybrid model over

the range of seawall slopes not covered in this study ([1:1 – 5:1] for example) to
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provide guidance on the limitations of the numerical model.

Modelling of wave run-up and overtopping using Nwogu’s Boussinesq

formulation

Although the hybrid solver discussed in Chapter 5 can be used to solve Nwogu’s

extended Boussinesq equations, only the Madsen and Sørensen Boussinesq formu-

lation was used to examine wave run-up and overtopping here. This decision was

made because the removal of the dispersion terms in the Madsen and Sørensen

formulation requires no special treatment, whereas oscillations form when using

Nwogu’s formulation. These oscillations occur because of the abrupt change from

using the horizontal velocity at an arbitrary depth to using the depth averaged

velocity of the SWE.

One method of using the finite-volume based hybrid scheme for the solution

of the Nwogu’s Boussinesq formulation, in particular for modelling wave run-

up and overtopping, would entail introducing a wave breaking model instead of

reverting to the SWE. Lynett et al. (2002) presented a finite-difference based model

of run-up and overtopping where additional terms were introduced to Nwogu’s

formulation to model wave breaking. To overcome the problem that occurs at

the wet/dry boundary, Lynett et al. used linear interpolation of the solution

variables (water surface elevation η and horizontal velocity uα) to ensure that

no special treatment needs to be applied to the fourth-order spatial derivatives

calculated for the wet cells close to the wet/dry boundary. The application of a

finite-volume based solver will present an improvement over the basic fourth-order

finite-difference solver (Wei and Kirby, 1995) used by Lynett et al. because of the

non-oscillatory feature of MUSCL reconstruction techniques.

A further advantage to using depth-averaged governing equations where there

is an assumed velocity profile (for example Nwogu’s Boussinesq formulation), is

that the range of applicability can be extended to deeper water by utilising a

layered approach. Lynett and Liu (2002, 2004b) derived a two-layer Boussinesq

formulation which was later extended to an N -layered formulation (Lynett and

Liu, 2004a) where Euler’s equation is vertically integrated over each layer assuming

a quadratic vertical velocity profile within each layer. The free parameters present

in the formulation are determined by comparing the linear dispersion properties

for the phase and group velocity with the linear dispersion relation similar to

the approach used by Nwogu (1993). It was found that a four layer Boussinesq-

type model derived using this approach is applicable up to d/L ≤ 25 which when
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compared to Nwogu’s one-layered system (that is applicable up to d/L ≤ 0.35)

represents a significant improvement and allows for wave propagation in deep

water to be modelled.

Two-dimensional Boussinesq modelling

The numerical models examined in this study have focused on one-dimensional

cases only. The numerical schemes presented in this thesis are all extendable to

enable modelling of water flow in two-dimensions. The extension of a numeri-

cal model to a two-dimensional mesh has several obvious advantages over a one-

dimensional model. The one-dimensional model is limited to wave run-up and

overtopping where the direction of the incident waves are perpendicular to the

shoreline. This is not the case in the real world where oblique wave attack is the

norm.

Causon et al. (2000) developed a Cartesian cut cell method which can be imple-

mented into a finite-volume based numerical scheme for arbitrary non-orthogonal

geographies. The Cartesian cut cell method discretises the two-dimensional so-

lution domain using a uniform Cartesian mesh. Where arbitrary topographies

are required, the solid regions are simple ‘cut out’ of the Cartesian mesh. This

approach produces three different types of cells: flow cells where no special treat-

ment is required; solid cells where no flow occurs and which are removed from

the calculations; and cut cells where part of the cell has been cut. Cut cells re-

quire a special treatment. The advantages that this method has over boundary

fitting methods are that no special mesh generation routines are required, and

only the cells that have been cut require an alteration of the numerical scheme.

Therefore, any loss of accuracy resulting from the special treatment is kept to a

minimum. The Cartesian cut cell method has since been extended to deal with

moving boundaries (Causon et al., 2001) allowing for the modelling of moving

solid objects within the flow region, for example a ship’s hull. Richardson (2002)

implemented the SGM into the cut cell method and used it to model tsunami

generation, propagation and run-up.

Application of the Cartesian cut cell method for the treatment of a two-

dimensional AMAZON-Hybrid model would not be as straightforward as in the

SWE case. The Hybrid scheme developed by Erduran et al. (2005) required a

fourth-order MUSCL reconstruction of the variables at each cell interface. This

does not present a problem where the additional dispersion terms have been re-

moved, i.e., in shallow water where a second-order reconstruction can be applied.
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However, for the case where cut cells occur in intermediate depth water, a fourth-

order treatment of the solid wall boundary condition is required for the cell inter-

face where the ‘cut’ has been applied. A crude solution could entail removing the

dispersion terms from the governing equations for the cells close to the cut cells.
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Alcrudo, F. and Garćıa-Navarro, P. (1993). A high-resolution Godunov-type
scheme in finite volumes for the 2D shallow-water equations. Int. J. Numer.
Methods Fluids, 16(6), 489–505.

Allsop, N. W. H., Besley, P., and Madurini, L. (1995). Overtopping performance
of vertical walls and composite breakwaters, seawalls and low reflection alterna-
tives. Technical report, Paper 4.7 in MCS Final Report, University of Hanover.

Ames, W. F. (1977). Numerical Methods for Partial Differential Equations, Second
Edition. Academic Press, New York.

Anderson, J. D. (1997). A History of Aerodynamics. Cambridge University Press.

Barber, R. W. (1992). Solving the shallow water equations using a non-orthogonal
curvilinear coordinate system. In Proceedings of the Second International Con-
ference on Hydraulic and Environment Modelling of Coastal, Estuarine and
River Waters, volume 1, pages 469–480, Bradford, England.

Battjes, J. A. and Groenendijk, H. W. (2000). Wave height distributions on shallow
foreshores. Coastal Engineering , 40(3), 161–182.

Beji, S. and Battjes, J. A. (1993). Expermental investigations of wave propagation
over a bar. Coastal Engineering , 19(1–2), 151–162.

Bermudez, A. and Vázquez-Cendón, M. E. (1994). Upwind methods for hyperbolic
conservation laws with source terms. Computers and Fluids, 23, 1049–1071.

148



BIBLIOGRAPHY 149

Bernoulli, D. (1738). Hydrodynamica, sive de viribus et motibus fluidorum com-
mentarii . Johann Reinhold Dulsseker, Strasbourg.

Besley, P. (1999). Overtopping of seawalls - design and assessment manual. R&D
Technical Report W178. Technical report, HR Wallingford.

Besley, P., Stewart, T., and Allsop, N. W. H. (1998). Overtopping of vertical
structures: new methods to account for shallow water conditions. In N. W. H.
Allsop, editor, Coastlines, Structures and Breakwaters, pages 46–57. Thomas
Telford.

Billingham, J. and King, A. C. (2000). Wave Motion. Cambridge University
Press.

Borthwick, A. G. and Kaar, E. T. (1993). Shallow flow modelling using curvilinear
depth-averaged stream function and vorticity transport equations. Int. J. for
Num. Methods in Fluids, 17, 417–445.

Borthwick, A. G. L., Ford, M., Taylor, P. H., Weston, B. P., and Stansby, P. K.
(2005). Prediction of solitary wave run-up at an arbitrary plane beach. In
Waves ’05 . Fifth International Symposium on Ocean Wave Measurement and
Analysis.

Bruce, G. H., Peaceman, D. W., Rachford, H. H., and Rice, J. D. (1953). Calcu-
lations of unsteady-state gas flow through porous media. Petrol. Trans. AIME ,
198, 79–92.
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Appendix A

Validation of the Hyperbolic

Nature of the SWE

A formal validation of the hyperbolic nature of the SWE is given here. This

follows the validation given in Hirsch (1988). The one-dimensional form of the

time-dependent SWE can be written as

∂h

∂t
+ u

∂h

∂x
+ h

∂u

∂x
= 0, (A.1)

∂u

∂t
+ u

∂u

∂x
+ g

∂h

∂x
= 0. (A.2)

In matrix form, Eqs. (A.1) and (A.2) can be written as

∂

∂t

(

h

u

)

+

(

u h

g u

)

∂

∂x

(

h

u

)

= 0. (A.3)

The two characteristic velocities, a1,2, are obtained from the solution of the eigen-

value problem
∣

∣

∣

∣

∣

−a + u h

g −a + u

∣

∣

∣

∣

∣

= 0 (A.4)

which yields

a1,2 = u ±
√

gh. (A.5)

Since theses eigenvalues are always real, the system is always hyperbolic in

(x, t).
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Appendix B

Derivation of difference formulae

Consider the Taylor series expansions of a function f(x) for x ± ∆x

fi+1 = fi + ∆xf ′
i +

∆x2

2!
f ′′

i +
∆x3

3!
f (3)

i + . . . +
∆xn

n!
fn

i , (B.1)

fi−1 = fi − ∆xf ′
i +

∆x2

2!
f ′′

i −
∆x3

3!
f (3)

i + . . . + (−1n)
∆xn

n!
fn

i . (B.2)

By truncating the series after the first-order derivative and rearranging, the fol-

lowing finite difference approximations of the first-order derivative can be derived

f ′
i =

fi+1 − fi

∆x
+ O(∆x), (B.3)

f ′
i =

fi − fi−1

∆x
+ O(∆x). (B.4)

Eqs. (B.3) and (B.4) are the forward and backward difference approximations

of f ′(x) respectively. These finite differences are first-order accurate, where O(∆x)

is the order of accuracy for the finite difference, and not the truncation error of

the series. A second-order accurate finite difference can be derived by considering

the central difference approximation. Subtracting Eq. (B.2) from Eq. (B.1) and

rearranging gives

f ′
i =

fi+1 − fi−1

2∆x
+ O(∆x2). (B.5)

This central difference is second-order accurate, and therefore is a more accurate

approximation of f ′(x) than the first-order accurate forward or backwards differ-

ences given above. It is desirable to use higher-order accurate differences when

approximating derivatives although, in general, the higher the order of accuracy,

the more solution nodes are required in the approximation. The central difference

approximation of the second derivative can be derived by adding Eq. (B.2) to
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Eq. (B.1) and rearranging to give

f ′′
i =

fi+1 − 2fi + fi−1

∆x2
+ O(∆x2). (B.6)

Higher order finite differences are derived by the method of undetermined coeffi-

cients in Appendix B.1.

B.1 Derivation of Fourth- Order Finite Differ-

ence Schemes

The derivation of the finite difference stencils used in Section 4.3 can be achieved

via the method of undetermined coefficients. The derivation of the fourth-order

central difference approximation of the first order derivative is shown here. All

of the other finite difference approximations used can be derived using a similar

method.

Consider a five point finite difference stencil

f (1)
i =

α1fi−2 + α2fi−1 + α3fi + α4fi+1 + α5fi+2

h
, (B.7)

where f (n)
i denotes the nth derivative of the variable f , αi {i = 1, 2, . . . , 5} are

coefficients, the values of which are to be determined; the values of fk where

k = i − 2, i− 1, . . . , i + 2 are the values of the variable at the solution nodes; and

h is the spatial step, i.e., ∆x or ∆y. By approximating the values of f using the

Taylor series truncated to fourth order accuracy, the values of α can be determined.

The fourth order Taylor series expansions of fi−2, fi−1, fi, fi+1 and fi+2 are:

fi−2 = fi − 2hf (1)
i + 2h2f (2)

i −
4

3
h3f (3)

i +
2

3
h4f (4)

i + O(h5), (B.8)

fi−1 = fi − hf (1)
i +

h2

2
f (2)

i −
h3

6
f (3)

i +
h4

24
f (4)

i + O(h5), (B.9)

fi = fi, (B.10)

fi+1 = fi + hf (1)
i +

h2

2
f (2)

i +
h3

6
f (3)

i +
h4

24
f (4)

i + O(h5), (B.11)

fi+2 = fi + 2hf (1)
i + 2h2f (2)

i +
4

3
h3f (3)

i +
2

3
h4f (4)

i + O(h5). (B.12)
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Substituting Eqs. (B.8)–(B.12) into Eq. (B.7) gives

f (1)
i =

α1

h

(

fi − 2hf (1)
i + 2h2f (2)

i −
4

3
h3f (3)

i +
2

3
h4f (4)

i

)

+
α2

h

(

fi − hf (1)
i +

h2

2
f (2)

i −
h3

6
f (3)

i +
h4

24
f (4)

i

)

+
α3

h
fi +

α4

h

(

fi + hf (1)
i +

h2

2
f (2)

i +
h3

6
f (3)

i +
h4

24
f (4)

i

)

+
α5

h

(

fi + 2hf (1)
i + 2h2f (2)

i +
4

3
h3f (3)

i +
2

3
h4f (4)

i

)

+ O(h4) (B.13)

which can be rearranged to give

f (1)
i =(α1 + α2 + α3 + α4 + α5)

fi

h
+ (−2α1 − α2 + α4 + 2α5) f (1)

i

+

(

2α1 +
1

2
α2 +

1

2
α4 + 2α5

)

hf (2)
i +

(

−
4

3
α1 −

1

6
α2 +

1

6
α4 +

4

3
α5

)

h2f (3)
i

+

(

2

3
α1 +

1

24
α2 +

1

24
α4 +

2

3
α5

)

h4f (4)
i + O(h4). (B.14)

Writing Eq. (B.14) in the form of a matrix equation gives

















1 1 1 1 1

−2 −1 0 1 2

2 1/2 0 1/2 2

−4/3 −1/6 0 1/6 4/3

2/3 1/24 0 1/24 2/3


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


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






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fi/h

f (1)
i

hf (2)
i

h2f (3)
i

h3f (4)
i

















, (B.15)

which can be solved by matrix inversion. We require the approximation of the

first order derivative, f (1)
i , therefore












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

α1

α2

α3

α4
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0 2/3 4/3 −1 −4

0 −1/12 −1/12 1/2 1

































0

1

0
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. (B.16)

Evaluation of the matrix equation in Eq. (B.16) leads to the following values

for the α coefficients

α1 =
1

12
, α2 = −

2

3
, α3 = 0, α4 =

2

3
, α5 = −

1

12
. (B.17)
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Therefore the fourth-order central difference approximation of a first order deriva-

tive can be found by substituting the values of α into Eq. (B.7)

f (1)
i =

fi−2 − 8fi−1 + 8fi+1 − fi+2

12h
. (B.18)

which is of the same form that is stated in Eq (4.27).



Appendix C

Wave Statistics, Run-up and

Overtopping Tables

The values recorded from the experiments modelled in the main body of the text

have been included here for completeness. For details of these experiments, the

reader is directed to the relevant sections in the text.

C.1 Solitary Wave Run-up on a Sloping Beach

The details of the solitary wave run-up experiments conducted by Synolakis (1987),

and modelled using the hybrid scheme in Section 5.4.3, are given in Tables C.1

and C.2. The dimensionless parameters, H/d and R/d, used in Fig. 5.7 have been

calculated and included here for completeness. The height of the solitary waves,

H , can be calculated from d and H/d, should the reader wish to reproduce the

experiments.

C.2 Edinburgh Wave Flume Experiments: wave

statistics

The significant wave heights, Hs, and the corresponding significant wave periods,

Tm, for the six depth gauges recorded for the hybrid Boussinesq model described

in Section 5.4.4 are presented here. The wave statistics have also been calculated

for the depth gauge data from the physical experiments for direct comparison.

Note that the wave statistics given in Table 3.1 are recorded at the toe of the

seawall. They therefore do not provide a good description of the wave conditions

due to non-linear effects of shoaling. The values of Hs and Tm, given in metres
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and seconds respectively, calculated from the physical experiments are shown in

Tables C.3 and C.4 respectively. The values of Hs and Tm calculated from the

hybrid Boussinesq model are shown in Tables C.5 and C.6 respectively.

C.3 Random Wave Overtopping Results

The details of the random wave overtopping experiments described in Section 5.4.5

are presented in Tables C.7 – C.9. The columns show (from left to right): the

foreshore slope; the seawall slope; the water depth, d, measured from the bottom of

the wave flume; the water depth at the toe of the seawall, dtoe; the crest freeboard,

Rc; and the significant wave height, Hs. The overtopping values for the Kansai

University experiments and the hybrid Solver model are presented in Tables C.10–

C.12. The columns show (from left to right): the dimensionless freeboard, R∗; the

discharge volumes, Q; and the dimensionless discharges, Q∗, for the Kansai data

and the Hybrid Boussinesq solver respectively. All dimensions are in metres with

the exception of the discharge volumes, Q, which are in cubic centimetres, the

dimensionless values for the freeboard, R∗, and the overtopping volumes, Q∗. The

values of R∗ and Q∗ are calculated using the following:

R∗ =
Rc

Hs
, (C.1)

Q∗ =
Q
√

gH3
s

, (C.2)

where Q is the discharge volume in cubic metres and g = 9.81 ms−2 is the accel-

eration due to gravity.
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Table C.1: Solitary wave run-up on a sloping beach: comparisons of run-up values.

Synolakis Hybrid
d (m) H/d R (m) R/d R (m) R/d
0.0625 0.2500 0.0316 0.5060 0.0270 0.4326
0.0625 0.0720 0.0146 0.2330 0.0169 0.2711
0.0801 0.4480 0.0579 0.7230 0.0472 0.5893
0.0979 0.0780 0.0246 0.2510 0.0294 0.3004
0.0979 0.3840 0.0608 0.6210 0.0571 0.5834
0.0981 0.0970 0.0269 0.2740 0.0342 0.3491
0.0984 0.4620 0.0648 0.6590 0.0616 0.6265
0.0989 0.2360 0.0462 0.4670 0.0486 0.4911
0.1567 0.0900 0.0423 0.2700 0.0487 0.3107
0.1572 0.2590 0.0816 0.5190 0.0860 0.5469
0.1562 0.2980 0.0861 0.5510 0.0945 0.6052
0.1565 0.3220 0.0925 0.5910 0.0892 0.5699
0.1569 0.1700 0.0639 0.4070 0.0686 0.4375
0.1670 0.2730 0.0813 0.4870 0.0787 0.4712
0.2085 0.0360 0.0259 0.1240 0.0322 0.1542
0.2092 0.1880 0.0856 0.4090 0.0793 0.3791
0.2101 0.1590 0.0807 0.3840 0.0860 0.4094
0.2144 0.1600 0.0823 0.3840 0.0691 0.3222
0.2208 0.0360 0.0267 0.1210 0.0375 0.1698
0.2400 0.0480 0.0437 0.1820 0.0485 0.2021
0.2843 0.0390 0.0432 0.1520 0.0470 0.1655
0.2855 0.0400 0.0445 0.1560 0.0484 0.1694
0.2914 0.0210 0.0221 0.0760 0.0299 0.1025
0.2934 0.0140 0.0144 0.0490 0.0203 0.0692
0.2935 0.0510 0.0561 0.1910 0.0580 0.1976
0.2940 0.0750 0.0759 0.2580 0.0777 0.2643
0.2954 0.0730 0.0733 0.2480 0.0763 0.2583
0.2962 0.0650 0.0675 0.2280 0.0780 0.2633
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Table C.2: Solitary wave run-up on a sloping beach: comparisons of run-up values.

Synolakis Hybrid
d (m) H/d R (m) R/d R (m) R/d
0.2963 0.0550 0.0613 0.2070 0.0627 0.2118
0.2972 0.0560 0.0615 0.2070 0.0644 0.2166
0.2973 0.0340 0.0428 0.1440 0.0411 0.1384
0.2975 0.0180 0.0220 0.0740 0.0263 0.0883
0.2977 0.0090 0.0107 0.0360 0.0135 0.0453
0.9800 0.0180 0.0735 0.0750 0.1013 0.1034
0.2983 0.0270 0.0322 0.1080 0.0381 0.1276
0.2986 0.0380 0.0436 0.1460 0.0479 0.1603
0.3000 0.0470 0.0585 0.1950 0.0565 0.1884
0.3048 0.0470 0.0594 0.1950 0.0568 0.1862
0.3097 0.0190 0.0242 0.0780 0.0267 0.0863
0.3106 0.0190 0.0236 0.0760 0.0283 0.0911
0.3331 0.0090 0.0137 0.0410 0.0133 0.0401
0.3352 0.0050 0.0064 0.0190 0.0063 0.0187
0.3355 0.0060 0.0074 0.0220 0.0084 0.0251
0.3361 0.0070 0.0087 0.0260 0.0103 0.0308
0.3365 0.0280 0.0414 0.1230 0.0427 0.1269
0.3365 0.0080 0.0098 0.0290 0.0125 0.0370
0.3376 0.0230 0.0294 0.0870 0.0366 0.1083
0.3384 0.0170 0.0213 0.0630 0.0258 0.0761
0.3404 0.0240 0.0334 0.0980 0.0388 0.1140
0.3452 0.0120 0.0166 0.0480 0.0188 0.0546
0.3429 0.0140 0.0178 0.0520 0.0212 0.0619
0.3439 0.0090 0.0124 0.0360 0.0127 0.0369
0.3797 0.0440 0.0691 0.1820 0.0675 0.1778
0.3799 0.0220 0.0372 0.0980 0.0372 0.0978
0.3832 0.0390 0.0621 0.1620 0.0615 0.1604
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Table C.3: Edinburgh wave flume experiments: experimental Hs

Distance of gauge from seawall (m)
Run 8.00 5.50 4.25 3.00 2.00 1.00

1 0.0768 0.0750 0.0758 0.0679 0.0698 0.0727
2 0.1104 0.1078 0.1091 0.0988 0.1006 0.1046
3 0.0925 0.0904 0.0912 0.0815 0.0837 0.0869
4 0.0554 0.0545 0.0551 0.0481 0.0499 0.0526
5 0.0700 0.0684 0.0692 0.0613 0.0635 0.0663
6 0.0882 0.0864 0.0885 0.1075 0.0904 0.0809
7 0.1147 0.1115 0.1135 0.1417 0.1150 0.1036
8 0.0741 0.0725 0.0744 0.0877 0.0768 0.0676
9 0.0585 0.0571 0.0583 0.0674 0.0608 0.0532
10 0.0986 0.0963 0.0986 0.1192 0.1001 0.0888
11 0.0909 0.0895 0.0895 0.0853 0.0809 0.0852
12 0.0827 0.0814 0.0812 0.0780 0.0736 0.0777
13 0.1054 0.1038 0.1030 0.0953 0.0933 0.0973
14 0.1153 0.1129 0.1128 0.1014 0.1010 0.1051
15 0.0984 0.0971 0.0968 0.0907 0.0880 0.0925

Table C.4: Edinburgh wave flume experiments: experimental Tm

Distance of gauge from seawall (m)
Run 8.00 5.50 4.25 3.00 2.00 1.00

1 1.2446 1.2364 1.2245 1.2302 1.2343 1.2391
2 1.2499 1.2578 1.2593 1.3042 1.2727 1.2694
3 1.2426 1.2371 1.2376 1.2422 1.2607 1.2364
4 1.2338 1.2322 1.2129 1.1725 1.2142 1.2222
5 1.2390 1.2304 1.2207 1.2004 1.2241 1.2238
6 1.4456 1.4658 1.4554 1.5475 1.4787 1.3990
7 1.4859 1.5075 1.4833 1.5620 1.5017 1.4491
8 1.4412 1.4350 1.4343 1.5628 1.4691 1.3836
9 1.4584 1.4191 1.4330 1.5635 1.4717 1.3706
10 1.4653 1.4841 1.4682 1.5657 1.4842 1.4110
11 0.9738 0.9738 0.9715 0.9625 0.9911 0.9717
12 0.9574 0.9696 0.9708 0.9566 0.9756 0.9649
13 0.9772 0.9925 0.9912 0.9799 1.0107 0.9971
14 0.9866 0.9982 0.9975 0.9889 1.0164 1.0083
15 0.9755 0.9844 0.9817 0.9703 1.0055 0.9858
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Table C.5: Edinburgh wave flume experiments: Hybrid Hs

Distance of gauge from seawall (m)
Run 8.00 5.50 4.25 3.00 2.00 1.00

1 0.0821 0.0737 0.0807 0.0606 0.0611 0.0660
2 0.1167 0.1034 0.1143 0.0892 0.0895 0.0940
3 0.0982 0.0870 0.0963 0.0750 0.0748 0.0794
4 0.0604 0.0533 0.0592 0.0445 0.0449 0.0481
5 0.0748 0.0662 0.0735 0.0571 0.0567 0.0607
6 0.0868 0.0774 0.0835 0.1005 0.0866 0.0707
7 0.1101 0.0987 0.1041 0.1298 0.1017 0.0859
8 0.0719 0.0649 0.0695 0.0849 0.0730 0.0594
9 0.0587 0.0533 0.0563 0.0713 0.0592 0.0464
10 0.0993 0.0889 0.0943 0.1152 0.0948 0.0782
11 0.0776 0.0591 0.0699 0.0392 0.0459 0.0494
12 0.0687 0.0544 0.0630 0.0369 0.0410 0.0451
13 0.0917 0.0703 0.0835 0.0456 0.0536 0.0576
14 0.0986 0.0761 0.0898 0.0476 0.0579 0.0613
15 0.0736 0.0571 0.0660 0.0377 0.0433 0.0474

Table C.6: Edinburgh wave flume experiments: Hybrid Tm

Distance of gauge from seawall (m)
Run 8.00 5.50 4.25 3.00 2.00 1.00

1 1.2995 1.3416 1.3181 1.6316 1.5673 1.4411
2 1.3044 1.3211 1.3405 1.5418 1.4431 1.3806
3 1.3303 1.3549 1.3177 1.5877 1.4757 1.4031
4 1.3230 1.3737 1.3097 1.5123 1.5658 1.4359
5 1.3198 1.3489 1.3018 1.4967 1.4828 1.3983
6 1.5194 1.6509 1.6219 1.6831 1.6511 1.6482
7 1.5429 1.6326 1.4877 1.6790 1.6539 1.5247
8 1.5471 1.6856 1.6858 1.6799 1.6154 1.7125
9 1.5381 1.5684 1.5529 1.6614 1.6039 1.5911
10 1.5167 1.5626 1.5352 1.6645 1.6140 1.5374
11 1.0407 1.0836 1.0832 1.2812 1.1977 1.1638
12 1.0540 1.1692 1.1225 1.8693 1.3440 1.2638
13 1.0536 1.0843 1.0763 1.3165 1.1620 1.1384
14 1.0588 1.0910 1.0797 1.2422 1.1460 1.1416
15 1.0325 1.1394 1.0797 1.6975 1.3127 1.2162
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Table C.7: Random wave overtopping: experimental setup.

Run Number Foreshore Seawall d dtoe Rc Hs

1 1:10 1:10 0.32 0.0000 0.0625 0.0625
2 1:10 1:10 0.30 0.0000 0.0625 0.0625
3 1:10 1:10 0.31 0.0000 0.0150 0.0200
4 1:10 1:10 0.31 0.0000 0.0150 0.0300
5 1:10 1:10 0.31 0.0000 0.0150 0.0312
6 1:10 1:10 0.31 0.0000 0.0150 0.0400
7 1:10 1:10 0.31 0.0000 0.0150 0.0450
8 1:10 1:10 0.31 0.0000 0.0150 0.0468
9 1:10 1:10 0.31 0.0000 0.0150 0.0625
10 1:10 1:10 0.31 0.0000 0.0150 0.0674
11 1:10 1:10 0.31 0.0000 0.0150 0.0899
12 1:30 1:7 0.40 0.3326 0.0050 0.0156
13 1:30 1:7 0.40 0.3326 0.0050 0.0312
14 1:30 1:7 0.40 0.3326 0.0050 0.0468
15 1:30 1:7 0.40 0.3326 0.0050 0.0625
16 1:30 1:7 0.40 0.3326 0.0050 0.0781
17 1:30 1:7 0.37 0.3029 0.0350 0.0156
18 1:30 1:7 0.37 0.3029 0.0350 0.0312
19 1:30 1:7 0.37 0.3029 0.0350 0.0468
20 1:30 1:7 0.37 0.3029 0.0350 0.0625
21 1:30 1:7 0.37 0.3029 0.0350 0.0781
22 1:30 1:7 0.39 0.3232 0.0150 0.0156
23 1:30 1:7 0.39 0.3232 0.0150 0.0312
24 1:30 1:7 0.39 0.3232 0.0150 0.0468
25 1:30 1:7 0.39 0.3232 0.0150 0.0625
26 1:30 1:7 0.39 0.3232 0.0150 0.0781
27 1:30 1:7 0.38 0.3138 0.0250 0.0156
28 1:30 1:7 0.38 0.3138 0.0250 0.0312
29 1:30 1:7 0.38 0.3138 0.0250 0.0468
30 1:30 1:7 0.38 0.3138 0.0250 0.0625
31 1:30 1:7 0.38 0.3138 0.0250 0.0781



C.3. Random Wave Overtopping Results 170

Table C.8: Random wave overtopping: experimental setup.

Run Number Foreshore Seawall d dtoe Rc Hs

32 1:30 1:5 0.40 0.3326 0.0050 0.0156
33 1:30 1:5 0.40 0.3326 0.0050 0.0312
34 1:30 1:5 0.40 0.3326 0.0050 0.0468
35 1:30 1:5 0.40 0.3326 0.0050 0.0625
36 1:30 1:5 0.40 0.3326 0.0050 0.0781
37 1:30 1:5 0.37 0.3029 0.0350 0.0156
38 1:30 1:5 0.37 0.3029 0.0350 0.0312
39 1:30 1:5 0.37 0.3029 0.0350 0.0468
40 1:30 1:5 0.37 0.3029 0.0350 0.0625
41 1:30 1:5 0.37 0.3029 0.0350 0.0781
42 1:30 1:5 0.39 0.3232 0.0150 0.0156
43 1:30 1:5 0.39 0.3232 0.0150 0.0312
44 1:30 1:5 0.39 0.3232 0.0150 0.0468
45 1:30 1:5 0.39 0.3232 0.0150 0.0625
46 1:30 1:5 0.39 0.3232 0.0150 0.0781
47 1:30 1:5 0.38 0.3138 0.0250 0.0156
48 1:30 1:5 0.38 0.3138 0.0250 0.0312
49 1:30 1:5 0.38 0.3138 0.0250 0.0468
50 1:30 1:5 0.38 0.3138 0.0250 0.0625
51 1:30 1:5 0.38 0.3138 0.0250 0.0781
52 1:30 1:3 0.40 0.3326 0.0050 0.0156
53 1:30 1:3 0.40 0.3326 0.0050 0.0312
54 1:30 1:3 0.40 0.3326 0.0050 0.0468
55 1:30 1:3 0.37 0.3029 0.0350 0.0156
56 1:30 1:3 0.37 0.3029 0.0350 0.0312
57 1:30 1:3 0.37 0.3029 0.0350 0.0468
58 1:30 1:3 0.39 0.3232 0.0150 0.0156
59 1:30 1:3 0.39 0.3232 0.0150 0.0312
60 1:30 1:3 0.39 0.3232 0.0150 0.0468
61 1:30 1:3 0.38 0.3138 0.0250 0.0156
62 1:30 1:3 0.38 0.3138 0.0250 0.0312
63 1:30 1:3 0.38 0.3138 0.0250 0.0468
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Table C.9: Random wave overtopping: experimental setup.

Run Number Foreshore Seawall d dtoe Rc Hs

64 1:30 1:4/3 0.40 0.3326 0.0050 0.0156
65 1:30 1:4/3 0.40 0.3326 0.0050 0.0312
66 1:30 1:4/3 0.40 0.3326 0.0050 0.0468
67 1:30 1:4/3 0.40 0.3326 0.0050 0.0625
68 1:30 1:4/3 0.40 0.3326 0.0050 0.0781
69 1:30 1:4/3 0.37 0.3029 0.0350 0.0156
70 1:30 1:4/3 0.37 0.3029 0.0350 0.0312
71 1:30 1:4/3 0.37 0.3029 0.0350 0.0468
72 1:30 1:4/3 0.37 0.3029 0.0350 0.0625
73 1:30 1:4/3 0.37 0.3029 0.0350 0.0781
74 1:30 1:4/3 0.39 0.3232 0.0150 0.0156
75 1:30 1:4/3 0.39 0.3232 0.0150 0.0312
76 1:30 1:4/3 0.39 0.3232 0.0150 0.0468
77 1:30 1:4/3 0.39 0.3232 0.0150 0.0625
78 1:30 1:4/3 0.39 0.3232 0.0150 0.0781
79 1:30 1:4/3 0.38 0.3138 0.0250 0.0156
80 1:30 1:4/3 0.38 0.3138 0.0250 0.0312
81 1:30 1:4/3 0.38 0.3138 0.0250 0.0468
82 1:30 1:4/3 0.38 0.3138 0.0250 0.0625
83 1:30 1:4/3 0.38 0.3138 0.0250 0.0781
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Table C.10: Random wave overtopping: overtopping values.

Kansai Hybrid Solver
Run number R∗ Q Q∗ Q Q∗

1 1.0000 41.46 0.0008 0.00 0.0000
2 1.0000 8.29 0.0002 0.00 0.0000
3 0.7506 553.04 0.0625 294.92 0.0333
4 0.5004 2119.85 0.1304 771.08 0.0474
5 0.4804 2958.72 0.1712 1653.33 0.0957
6 0.3753 4451.61 0.1779 2530.25 0.1011
7 0.3336 7175.73 0.2403 4492.20 0.1504
8 0.3202 5471.88 0.1723 4930.88 0.1553
9 0.2402 8708.11 0.1781 8275.60 0.1693
10 0.2224 14680.15 0.2676 9466.39 0.1725
11 0.1668 23777.47 0.2815 14600.76 0.1729
12 0.3197 1761.94 0.2884 2606.93 0.4266
13 0.1599 6449.27 0.3732 8133.23 0.4706
14 0.1066 12386.62 0.3901 14701.92 0.4630
15 0.0799 16583.00 0.3392 21731.32 0.4446
16 0.0639 23175.44 0.3392 28350.39 0.4150
17 2.2417 0.00 0.0000 0.00 0.0000
18 1.1209 49.84 0.0029 0.00 0.0000
19 0.7472 333.90 0.0105 191.88 0.0060
20 0.5604 1160.81 0.0237 1202.18 0.0246
21 0.4483 1854.04 0.0271 2990.97 0.0438
22 0.9592 342.02 0.0560 46.90 0.0077
23 0.4796 1758.89 0.1018 2368.68 0.1371
24 0.3197 4846.94 0.1527 6851.69 0.2158
25 0.2398 7462.35 0.1527 12353.62 0.2527
26 0.1918 11587.72 0.1696 17777.09 0.2602
27 1.5987 10.36 0.0017 0.00 0.0000
28 0.7993 381.09 0.0221 493.00 0.0285
29 0.5329 1077.10 0.0339 2577.42 0.0812
30 0.3997 2736.19 0.0560 5739.66 0.1174
31 0.3197 5793.86 0.0848 9953.26 0.1457
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Table C.11: Random wave overtopping: overtopping values.

Kansai Hybrid Solver
Run number R∗ Q Q∗ Q Q∗

32 0.3197 2072.87 0.3392 3468.09 0.5676
33 0.1599 6449.27 0.3732 10419.65 0.6029
34 0.1066 12386.62 0.3901 18184.64 0.5727
35 0.0799 17412.14 0.3562 26430.36 0.5407
36 0.0639 26651.76 0.3901 34759.84 0.5088
37 2.2417 0.00 0.0000 0.00 0.0000
38 1.1209 205.20 0.0119 233.44 0.0135
39 0.7472 915.53 0.0288 2056.32 0.0648
40 0.5604 2487.45 0.0509 5337.73 0.1092
41 0.4483 4635.09 0.0678 9421.95 0.1379
42 0.9592 331.66 0.0543 446.68 0.0731
43 0.4796 2638.34 0.1527 4401.41 0.2547
44 0.3197 6462.58 0.2035 10524.43 0.3315
45 0.2398 11608.10 0.2375 17256.57 0.3530
46 0.1918 15064.04 0.2205 24070.08 0.3523
47 1.5987 72.55 0.0119 25.15 0.0041
48 0.7993 586.30 0.0339 1573.86 0.0911
49 0.5329 2154.19 0.0678 5220.38 0.1644
50 0.3997 4974.90 0.1018 9842.39 0.2013
51 0.3197 10428.95 0.1527 14810.81 0.2168
52 0.3197 2280.16 0.3732 3685.61 0.6032
53 0.1599 8208.16 0.4749 11548.08 0.6682
54 0.1066 12925.17 0.4071 20556.86 0.6475
55 2.2417 0.00 0.0000 0.00 0.0000
56 1.1209 175.89 0.0102 808.67 0.0468
57 0.7472 1184.81 0.0373 3988.87 0.1256
58 0.9592 310.93 0.0509 747.55 0.1223
59 0.4796 2902.17 0.1679 5416.47 0.3134
60 0.3197 7001.13 0.2205 12787.50 0.4028
61 1.5987 29.02 0.0047 45.69 0.0075
62 0.7993 938.08 0.0543 2276.26 0.1317
63 0.5329 3769.84 0.1187 7495.27 0.2361
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Table C.12: Random wave overtopping: overtopping values.

Kansai Hybrid Solver
Run number R∗ Q Q∗ Q Q∗

64 0.3197 1554.66 0.2544 3232.68 0.5290
65 0.1599 8208.16 0.4749 11043.91 0.6390
66 0.1066 16695.01 0.5258 20153.69 0.6348
67 0.0799 0.00 0.0000 0.00 0.0000
68 0.0639 0.00 0.0000 0.00 0.0000
69 2.2417 4.15 0.0007 0.00 0.0000
70 1.1209 469.04 0.0271 655.18 0.0379
71 0.7472 2854.31 0.0899 3250.32 0.1024
72 0.5604 6633.20 0.1357 7596.56 0.1554
73 0.4483 11587.72 0.1696 14139.44 0.2070
74 0.9592 621.86 0.1018 532.16 0.0871
75 0.4796 4104.08 0.2375 5008.02 0.2898
76 0.3197 9693.87 0.3053 11706.81 0.3687
77 0.2398 14924.70 0.3053 20473.63 0.4188
78 0.1918 28969.30 0.4240 29804.98 0.4363
79 1.5987 5.49 0.0009 45.12 0.0074
80 0.7993 1700.26 0.0984 2097.25 0.1213
81 0.5329 5385.49 0.1696 6856.24 0.2159
82 0.3997 10778.95 0.2205 15920.26 0.3257
83 0.3197 19699.12 0.2884 20256.20 0.2965
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Abstract

The shallow water equations (SWE) have been used to model a series of experiments examining violent wave overtopping
of a near-vertical sloping structure with impacting wave conditions. A finite volume scheme was used to solve the shallow water
equations. A monotonic reconstruction method was applied to eliminate spurious oscillations and ensure proper treatment of
bed slope terms. Both the numerical results and physical observations of the water surface closely followed the relevant
Rayleigh probability distributions. However, the numerical model overestimated the wave heights and suffered from the lack of
dispersion within the shallow water equations. Comparisons made on dimensionless parameters for the overtopping discharge
and percentage of waves overtopping between the numerical model and the experimental observations indicated that for the
lesser impacting waves, the shallow water equations perform satisfactorily and provide a good alternative to computationally
more expensive methods.
D 2004 Elsevier B.V. All rights reserved.

Keywords: Violent wave overtopping; Shallow water equations; Finite volume method; Surface gradient method

1. Introduction

Violent wave overtopping occurs when waves
break against sea walls, throwing water up and over
the top. Of the hundreds of kilometres of coastal
defences in Britain, a significant proportion have
roads, railways and footpaths running alongside. Vi-
olent overtopping events have been known to wash

people, cars and trains into the sea and represent a
threat to human life and property.

Wave overtopping has been studied extensively
over the past 30 years. Goda et al. (1975), Owen
(1982) and Franco et al. (1994) all present data and
guidance on overtopping volumes for a variety of
sloping and vertical structures. Owen and Franco et al.
focus primarily upon cases where waves do not break
(pulsating or nonimpulsive conditions). While Goda’s
data includes violent or impulsive conditions, these
are not treated separately. Besley et al. (1998) and
Pearson et al. (2001) have used observations from
either physical models or field data to gain a greater
understanding of violent, impulsive overtopping.

0378-3839/$ - see front matter D 2004 Elsevier B.V. All rights reserved.
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Guidance on mean and wave-on-wave overtopping
volumes under violent conditions is now established,
but for simple structures and standard sea spectra only.

Violent overtopping events are difficult to model
using current numerical methods. Ideally, the use of
the well-known Navier–Stokes equations would pro-
vide a good model of the overtopping events. How-
ever, numerical solvers for these equations require
extensive computational resources, and until com-
puters are developed that can allow for a model based
on the Navier–Stokes equations to be practical, an
alternative method is required.

A depth-averaged formulation of the Navier–
Stokes equations exists in the shallow water equations
(SWE). As the SWE are depth averaged, any vertical
velocity is neglected. Thus, these equations, in theory,
may not be suitable as a basis for a numerical model
for violent wave overtopping where vertical velocities
are a major feature. However, SWE models are easy to
implement and computationally efficient. Therefore,
before discarding them altogether, an analysis of the
limitations of the SWE model is required.

Existing models that make use of the SWE to
model wave runup and overtopping include ODI-
FLOCS (van Gent, 1994, 1995) and ANEMONE
(Dodd, 1998). These models have been used to give
predictions of wave runup and overtopping of sea
dikes where wave conditions are less impacting and
violent overtopping is less likely to occur.

This paper examines the validity of a numerical
model based on the SWE to model violent wave
overtopping of sea walls.

2. Numerical model

The shallow water equations (SWE) in one dimen-
sion can be expressed as

B

Bt
Uþ B

Bx
FðUÞ ¼ S ð1Þ

where

U ¼
/

/u

0

@

1

A; FðUÞ ¼
/u

/u2 þ 1
2 /

2

0

@

1

A;

S ¼
0

g/ BH=Bx

0

@

1

A;
ð2Þ

and / = gh is the geopotential; h is the water depth;
g = 9.81 m s% 2 is the acceleration due to gravity; u is
the depth average velocity in the x-direction, and H is
the distance between a fixed reference level and the
bed surface elevation (see Fig. 1). In this form, U
represents the vector of conserved variables, F(U) the
flux vector function, and S is the vector of source
terms.

The SWE are a hyperbolic system of partial dif-
ferential equations that can admit discontinuities into
the solution. These can be difficult to model as
spurious oscillations created by the numerical scheme
around the area of the discontinuity tend to contam-
inate the solution and eventually render any results
worthless. Therefore, for a scheme to be considered
applicable when solving the SWE, it must be able to
satisfactorily deal with discontinuous behaviour. The

Fig. 1. Definition sketch for bed topography.
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MUSCL–Hancock finite volume scheme (van Leer,
1985) has been chosen by the authors as it has been
extensively tested over a range of demanding test
cases (Mingham and Causon, 1998; Hu et al. 2000)
and performed admirably in all. The scheme is a high-
resolution Godunov-type scheme incorporating the
HLL Riemann solver (Harten et al. 1983) to provide
solutions to the local Riemann problems at the cell
interfaces.

2.1. The MUSCL–Hancock scheme

The MUSCL–Hancock scheme is a two-stage
predictor–corrector method. The predictor stage is
given as

Unþ1=2
ij ¼ Un

ij #
Dt

2A

X

M

m¼1

FðUmÞ & Lm # ASnij

 !

; ð3Þ

where n is the time step counter; ij is the cell index; Dt
is the step; A is the cell area; Lm is the cell side vector
defined as the cell side multiplied by the outward
pointing unit normal vector; M is the number of sides
of the cell ij. The fluxes at the cell interfaces m
(F(Um)) are calculated using slope limited gradients
based upon neighbouring cell data (Section 2.1.1).

The corrector stage provides a fully conservative
solution over one time step and is given as

Unþ1
ij ¼Un

ij#
Dt

A

X

M

m¼1

FðUL
m;U

R
mÞ

nþ1=2&Lm # ASnþ1=2
ij

 !

;

ð4Þ

where the flux vector F(Um
L,Um

R) are the solutions to
the local Riemann problems at each time step calcu-
lated using the HLL approximate Riemann solver (see
Section 2.1.2). Um

L and Um
R are the conserved variables

at the left and right side of each cell interface,
respectively.

A full description and extensive validation of the
MUSCL–Hancock scheme can be found in Mingham
and Causon (1998).

2.1.1. MUSCL reconstruction
MUSCL (Monotonic Upwind Schemes for Con-

servation Laws) schemes use the values of the con-

served variables at the cells immediately adjacent to
the cell i to calculate a slope-limited gradient which
ensures that there is no over/undershoots at the cell
interfaces, (iF 1/2) (Toro, 1997). Here, the authors
have used the well-known van Leer slope limiter
function which is given in Hirsch (1998).

The values of the conserved variables / and /u
can be found at the cell interfaces by using linear
interpolation. For example, the values of the geo-
potential at the left- and right-hand side of the cell
interface (i# 1/2) are

/L
i#1=2 ¼ /i#1 þ

1

2
Dxi#1d/i#1;

/R
i#1=2 ¼ /i #

1

2
Dxid/i; ð5Þ

where d/i are the slope limited gradients of /i and

Dxi ¼ xiþ1=2 # xi#1=2: ð6Þ

2.1.2. HLL approximate Riemann solver
The corrector stage of the Hancock scheme

requires the solution to a local Riemann problem at
every cell interface. The Riemann solver used here
was developed by Harten et al. (1983) (HLL) and has
shown to be accurate and robust in practice (Mingham
and Causon, 1998) and considerably less computa-
tionally expensive than an exact Riemann solver. The
wave speed calculations used here can be found in
Davis (1988) for a wet bed and Fraccarollo and Toro
(1995) for a dry bed.

2.1.3. Time step calculation
To ensure that the time marching scheme remains

stable, a maximum allowable time step calculation
based upon the stability condition developed by
Courant, Friedrichs and Lewy (CFL) is applied (Mor-
ton and Mayers, 1994). The time step Dt is given by

Dt ¼ m min
i

Dxi
AuiAþ

ffiffiffiffiffi

/i

p

 !

; ð7Þ

where m is the Courant number (0 < mV 1). For all
numerical solutions presented here, a Courant number
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of m = 0.65 was used throughout to ensure scheme
stability.

2.2. The surface gradient method

The numerical scheme presented in Section 2.1
solves the homogeneous form of the SWE where
applications are mainly limited to flat-bed shock and
bore wave propagation problems. However, the inclu-
sion of the source terms that model bed topography
ensure more realistic formulations applicable to prob-
lems such as wave runup and overtopping on a
sloping beach and tidal flows in coastal water regions.
It has been found that for a conservative scheme a
naı̈ve numerical treatment of source terms may lead to
nonphysical behaviour of the fluid (Leveque, 1998).

The numerical treatment of source terms has re-
ceived particular attention in the last few years with a
variety of different methods proposed. Garcia-Navarro
and Vázquez-Cendón (2000) proposed an upwind
scheme which uses an extension of the formulation
of Roe’s scheme. Another approach was proposed by
Hu et al. (2000), in which the authors used the
MUSCL–Hancock scheme to solve the inviscid
SWE along with an ODE solver (Euler) for the
treatment of the source terms. Both of the methods
described above performed well on standard test
cases. However, they did suffer from being overly
complicated. Zhou et al. (2001) developed a Surface
Gradient Method (SGM) to deal with the treatment of
the source terms that requires very few alterations to
the MUSCL–Hancock scheme. The SGM was shown
to give excellent agreement with known solutions to
standard test cases chosen to examine the scheme’s
ability to model both transcritical flow and steady-
state problems.

Traditional MUSCL schemes use the conserved
variables / and /u to approximate the fluxes at the
cell interfaces such as

/iF1=2 ¼ /iF
1

2
Dxid/i;

ð/uÞiF1=2 ¼ ð/uÞiF
1

2
Dxidð/uÞi; ð8Þ

where iF 1/2 are the cell interfaces; Dx is the cell
width and d/i and d(/u)i are the slope-limited gra-
dients across cell i. The SGM approach uses the water

surface elevation as the basis for the MUSCL recon-
struction instead of the geopotential. The water sur-
face elevation, gi, is defined by

gi ¼ hi þ zbi; ð9Þ

where hi and zbi are the water height and bed surface
elevation, respectively (Fig. 1). The reconstruction
process is then applied by using

/iF1=2 ¼ gðgiF 1

2
Dxidgi % zbiF1=2Þ ð10Þ

This approach ensures that any errors that are
caused by the difference between the gradient of the
water height, h(x,t), and the gradient of the bed slope,
zb(x), do not affect the solution. The SGM is fully
conservative so long as a centred discretisation of the
source terms is used. When using the SGM, the bed
surface elevation, zbi is calculated by averaging the
bed elevation at the cell interfaces.

A full description of the SGM together with a
formal proof of the conservative properties and vali-
dation can be found in Zhou et al. (2001).

3. Violent wave overtopping

The more violent impact of water waves on sea
walls cause velocities and pressures much larger then
those associated with the wave’s propagation under
gravity (Peregrine, 2002), and it is under these con-
ditions that violent wave overtopping can occur. A
study into violent wave overtopping was the focus of
the VOWS (Violent Overtopping by Waves at Sea
walls) project funded by the EPSRC (Engineering and
Physical Sciences Research Council). As part of the
VOWS project, physical model tests of violent wave
overtopping were carried out in a wave channel at the
University of Edinburgh.

Allsop et al. (1995) developed a parameter (h*)
that measures the type of wave interaction (and
therefore, the type of overtopping) with vertical walls.
The h* parameter is given as

h* ¼ h

Hs

2ph
gT2

m

! "

; ð11Þ

where h is the wave height at the toe of the
structure; Hs =H1/3 (the mean of the top one-third
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wave heights) is the significant wave height, g = 9.81
m s! 2 is the acceleration due to gravity and Tm is
the mean wave period. When h*>0.3, the waves
reflect from the vertical structure, and any over-
topping is likely to be gentle ‘green water’ over-
topping. When h*V 0.3, impacting waves begin to
prevail and ultimately dominate, resulting in violent
wave overtopping.

3.1. The Edinburgh wave flume experiments

The wave flume that was used to carry out the
physical modelling is approximately 20 m in length
by 0.4 m wide with an absorbing flap-type wave
generator located at one end (Fig. 2). The operating
water depth is 0.7 m (intermediate depth at the wave
generator). The basic bathymetry of the wave flume
consists of a 1:10 sloping beach on which is placed a
10:1 battered wall. The battered wall is placed so
that the water depth at the toe of the structure, h, is
0.09 m. Eight wave gauges that record water surface
elevation are placed at 1.0, 2.0, 3.0, 4.25, 5.5, 6.75,
8.0 and 11.21 m away from the battered wall and
record water depth at a rate of 100 Hz (Fig. 3). The
wave generator produced 1024-second sequences of
waves from the JONSWAP spectrum with c = 3.3,
representing sequences consisting of f 1000 waves.
In all, 15 runs of the experiment were carried out
using this configuration that produced h* values
ranging from 0.03 to 0.1.

Table 1 contains the significant wave height (Hs)
measured at the toe of the battered wall, the mean
wave period (Tm), the h* parameter and the dimen-
sionless freeboard Rh (see Section 3.4) for the 15 runs
of the experiment.

3.2. Numerical model of the Edinburgh wave flume
experiments

For the numerical modelling of the Edinburgh
wave flume experiments, a reduced solution domain
starting at 2.0 m away from the battered wall was
used to minimise the energy loss that may occur as
the waves propagate up the flume. The total length of
the numerical flume was 2.1 m which was discretised
into 100 computational cells (Dx = 0.021 m). The
water surface elevation recorded at the gauge placed
2.0 m away from the battered wall serves as the
boundary condition for the water depth at the left-
hand boundary, whilst the velocity was assumed to be
the same as that of the first computational cell in from
the left-hand boundary. This boundary condition
takes into account both incident waves and reflecting
waves from the structure. A study carried out by
Richardson et al. (2001) showed that this boundary
condition provides values of the water surface and
velocity that are 99% and 85% accurate, respectively,
when compared to a moving boundary model. A
transmissive boundary condition was used at the
right-hand boundary to allow water to pass out of
the solution domain.

Data were collected from two points within the
solution domain. At x = 1.0 m, the water surface eleva-
tion was recorded which corresponds with the gauge
placed 1.0 m from the battered wall. At x = 2.03 m, the
overtopping discharge, q, was calculated from the
water depth and positive velocity by using the equation

q ¼ huDt: ð12Þ

An overtopping event is considered to have oc-
curred if a positive water depth is recored at the gauge

Fig. 2. Edinburgh wave flume: side elevation.
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placed at the top of the battered wall and the velocity
recorded at the same gauge is landward.

3.3. Results

A plot of the numerical and experimental water
surface at the gauge placed 1.0 m away from the
battered wall over two separate time intervals can be
seen in Fig. 4. A comparison between the water
surface elevation for the physical model and the
numerical model suggests that the numerical surface
over-predicts the wave heights at the gauge placed 1.0
m away from the battered wall. The crests of the
numerical waves occur at the same time as the
physical waves. The lack of dispersion within the
SWE is responsible for this shortfall in the numerical

model as the energy loss observed in the physical
model is not replicated.

Plots showing the overtopping discharge, q, over
time 0–1200 s for all 15 runs of the numerical
model and the physical model can be seen in Figs.
5 and 6. An overtopping event can be identified in
Figs. 5 and 6 to be a steep upward turn in the
discharge plot. Runs 3, 13 and 14, in particular,
show excellent agreement between the numerical and
physical discharge. However, runs 7, 9 and 10 show
that the agreement is poor for these cases. A quan-
titative analysis of the discharges has been performed
in Section 3.4.

3.4. Wave and overtopping statistics

In order to compare the numerical model of the
wave flume and the physical experiment, a number
of statistics have been calculated that analyse the
water surface elevations and the overtopping dis-
charges. To compare the water surface elevations
recorded by the depth gauges placed 1.0 m away
from the battered wall, the probability density func-
tions (PDFs) for numerical and physical models have
been calculated and compared with the Rayleigh
distributions. Analysis of the overtopping discharges
has been achieved by calculating values of dimen-
sionless parameters and comparing results against
empirical formulae.

3.4.1. Rayleigh wave height distribution
Longuet-Higgins (1952) showed that based upon

the linear model of waves with a narrow energy
spectrum, wave heights in deep water should follow
the Rayleigh distribution (Battjes and Groenendijk,

Table 1

Edinburgh wave flume experiment parameters

Run Hs
y Tm

y h* Rh

1 0.063 1.23 0.0544 0.1296

2 0.074 1.27 0.0435 0.0881

3 0.069 1.25 0.0481 0.1046

4 0.059 1.25 0.0563 0.1431

5 0.062 1.25 0.0536 0.1296

6 0.071 1.50 0.0325 0.0686

7 0.078 1.48 0.0304 0.0584

8 0.063 1.52 0.0356 0.0849

9 0.050 1.52 0.0449 0.1347

10 0.075 1.50 0.0307 0.0615

11 0.062 0.97 0.0889 0.2152

12 0.059 0.95 0.0974 0.2477

13 0.066 0.98 0.0818 0.1860

14 0.068 1.00 0.0763 0.1683

15 0.064 0.98 0.0844 0.1978

y Measured at the toe of the battered wall.

Fig. 3. Edinburgh wave flume: experimental setup.
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Fig. 4. Numerical simulation of the Edinburgh wave flume experiments: comparison of the experimental (solid line) and the numerical (dotted

line) water surface at gauge placed 1.0 m from the battered wall over time intervals of t=[10,30] (a) and t=[100,120] (b).
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Fig. 5. Comparison of the numerical discharge (dotted line) against the experimental discharge (solid line) for runs 1–8.

J.B. Shiach et al. / Coastal Engineering 51 (2004) 1–158



Fig. 6. Comparison of the numerical discharge (dotted line) against the experimental discharge (solid line) for runs 9–15.
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Fig. 7. Comparison of the experimental (left) and numerical (right) PDFs against their corresponding Rayleigh distributions (dashed line) for

runs 4, 6 and 9.
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2000). The probability that waves have a height less
than H is then

PðH < HÞ ¼ 1$ exp $ H

Hrms

! "2
" #

; ð13Þ

where H is a random variable; Hrms =H1/3/1.416 is the
root mean square (rms) of the wave heights, and H1/3

is the mean of the top 1/3 wave heights.
The observed probability distribution for the wave

heights is given as

PðH < HÞ ¼ 1$ i

N $ 1
; ð14Þ

where i is the ith largest recorded wave height and N
is the number of waves recorded. Plots of the ob-
served and Rayleigh probability functions for runs 4,
6 and 9 are compared in Fig. 7.

The observed probability functions for both the
physical experiment and the numerical model closely
follow the Rayleigh distribution when the observed
wave heights are greater than the median value. For
smaller wave heights, there is a degree of scatter away
from the Rayleigh probability distribution. However,
as noted earlier (Fig. 4), the numerical model produ-
ces greater wave heights.

3.4.2. Overtopping statistics
In order to compare overtopping discharges be-

tween different experimental set-ups, dimensionless

parameters for the volume of discharge and freeboard
have been calculated. For h* values of less than 0.3,
these are given as (Besley, 1999)

Qh ¼
Q
ffiffiffiffiffiffiffiffiffi

gH3
s

p

 !

=h*2; ð15Þ

and

Rh ¼
Rc

Hs

! "

h*; ð16Þ

where Hs is the significant wave height at the toe of
the battered wall, Qh is the dimensionless discharge
and Rh is the dimensionless freeboard; Q is the mean
overtopping discharge rate per metre of sea wall (q/t
where t denotes the total amount of time the experi-
ments was run for, in this case t= 1200 s), and Rc is
the crest freeboard (Fig. 2). Besley et al. (1998)
performed an extensive range of measurements for
mean overtopping discharge on vertical walls, and the
line of best fit using these measurements can be
described by the following equation

Qh ¼ 0:000137R$3:24
h : ð17Þ

Besley also developed an equation describing the
proportion of waves that overtop a vertical wall given

Table 2

Overtopping statistics

Run h* Physical model Numerical model

Q Qh Now Nw Now/Nw

(%)

Q Qh Now Nw Now/Nw

(%)

1 0.063 1.26E$ 05 0.0502 175 863 20 1.09E$ 05 0.0436 84 1037 8

2 0.074 3.25E$ 05 0.2033 479 888 54 5.02E$ 05 0.3142 290 967 30

3 0.069 2.38E$ 05 0.1216 299 900 33 2.70E$ 05 0.1379 196 1017 19

4 0.059 2.68E$ 06 0.0100 39 850 5 1.24E$ 06 0.0046 13 1038 1

5 0.062 8.45E$ 06 0.0349 132 898 15 6.19E$ 06 0.0255 44 1042 4

6 0.071 2.26E$ 05 0.2531 329 719 46 2.40E$ 05 0.2693 203 854 24

7 0.078 3.88E$ 05 0.4971 535 712 75 8.83E$ 05 1.1317 541 847 64

8 0.063 1.19E$ 05 0.1104 173 682 25 9.49E$ 06 0.0883 61 861 7

9 0.050 3.61E$ 06 0.0212 76 658 12 2.17E$ 06 0.0127 14 849 2

10 0.075 2.74E$ 05 0.3431 410 719 57 4.87E$ 05 0.6088 292 864 34

11 0.062 1.37E$ 05 0.0205 204 1000 20 1.11E$ 05 0.0167 89 1252 7

12 0.059 7.94E$ 06 0.0099 125 1017 12 6.91E$ 06 0.0086 47 1239 4

13 0.066 2.35E$ 05 0.0415 394 985 30 2.61E$ 05 0.0460 150 1233 12

14 0.068 2.84E$ 05 0.0576 357 1000 36 2.63E$ 05 0.0534 214 1225 17

15 0.064 1.89E$ 05 0.0313 278 985 28 1.63E$ 05 0.0270 121 1239 10
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the dimensionless freeboard parameter. For h*V 0.3,
this is

Now=Nw ¼ 0:031R"0:99
h ; ð18Þ

where Now is the number of overtopping waves, and
Nw is the number of waves in the sequence.

Table 2 contains the overtopping statistics calcu-
lated for both the physical and numerical models. The
dimensionless discharges are plotted against the di-
mensionless freeboards in Fig. 8 which also shows
Besley’s relationship. The percentages of waves over-
topping in the numerical and physical models are
shown in Fig. 9, along with the empirical Besley
curve.

Fig. 8. Dimensionless discharge (Qh) plotted against dimensionless freeboard (Rh) for the physical model and the numerical model.

Fig. 9. Percentage of waves overtopping the 10:1 battered wall.
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For dimensionless freeboard values of 0.16 and
greater, there is excellent agreement both between the
numerical and experimental dimensionless discharges
and with the Besley curve (Fig. 8). At the lower
values of Rh (RhV 0.1), there is not so good agree-
ment between the two data sets and the Besley curve.
However, the general trend is still maintained. For Rh

between 0.12 and 0.15, there is a marked decrease in
the accuracy of the Besley curve when compared to
the calculated dimensionless discharges.

The percentage of waves overtopping in the nu-
merical model is significantly less than was recorded
from the physical model (Fig. 9). This is due to the
fact that breaking waves are represented by bore
waves in the depth averaged SWE. The physical
processes that occur to create violent overtopping
events cannot be modelled properly in this manner,
hence, the wave-by-wave overtopping predictions.
However, as a comparison of the discharge volume
shows, the SWE give good predictions of mean
overtopping discharge. In keeping with the findings
from Fig. 8, where the Rh values are greater than 0.16,
the numerical model shows slightly better agreement
with the Besley curve than at lower values of Rh

where the data points are more scattered.
The absolute percentage difference between the

numerical and the physical models has been calculat-

ed for both the dimensionless discharge and the
significant wave height 1.0 m from the battered wall
(Fig. 10). Fig. 10 shows that there are two distinct
populations of data points, the runs where the h*
values are 0.075–0.1 and the runs where the h* values
are less than 0.06. For runs where the h* parameter is
0.075–0.1 (runs 11–15), the percentage errors for
both the dimensionless discharge (Qh) and the signif-
icant wave heights (Hs) are less than 20%. For the
runs where the h* parameter is less than 0.06 (runs 1–
10), the absolute percentage error for the significant
wave height is typically 35–40%, and the percentage
error for the dimensionless discharge is also spread
around the 35–40% area, with two outliers that have a
percentage error of 79% and 127% where the value of
h* is the lowest of all of the runs at 0.03.

4. Conclusions

AMAZON, a numerical model based upon the
shallow water equations was described. The numerical
scheme used is the MUSCL–Hancock scheme which
is a high-resolution Godunov-type scheme that uses
MUSCL reconstruction to prevent spurious oscilla-
tions. The surface gradient method, a modern method
for dealing with the treatment of source terms within

Fig. 10. Percentage error between the physical model and the numerical model for the observed significant wave height (Hs) and the

dimensionless discharge (Qh).
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the shallow water equations, was discussed and imple-
mented. The numerical model was used to simulate a
physical experiment carried out in a wave flume as
part of the VOWS project.

Comparisons between water surface elevations of
the physical and numerical models show that although
the waves occur at the same time, the numerical
surface over-predicts the heights of each wave. This
can be attributed to the lack of dispersion within the
shallow water equations that are being used in non-
shallow water. The probability density functions for
non-exceedence were calculated for both the physical
and numerical models and compared against the
expected Rayleigh distributions. Both models showed
good agreement with the expected Rayleigh distribu-
tions, but again showed that the numerical model
over-predicts the wave heights.

Dimensionless statistics were calculated to com-
pare overtopping discharges. These were then com-
pared to empirical formulae that showed that for
higher h* values, there was better agreement between
the numerical model, the physical model and the
empirical formulae. An analysis of the percentage of
overtopping waves showed that the numerical model
significantly underestimated the number of overtop-
ping events in the sequence, but it was noted that for
higher values of Rh (and therefore, h*) the numerical
model provided a better fit to the empirical formulae
than for lower values of h*. Finally, a comparison was
made between the absolute percentage error between
the numerical and physical model that showed that for
h* values 0.075–0.1, the shallow water equations
produce results to within 20% of the physical model
for both the significant wave height and the dimen-
sionless discharge. For values of h* below 0.06, the
analysis showed that the percentage errors ranged
from a typical 40% to a couple of outliers at 79%
and 127% for small values of h* where waves are
mostly impacting.

It is concluded that the shallow water equations
provide a useful alternative to more computationally
expensive models for violent wave overtopping pro-
vided the h* parameter does not fall below 0.075 and
that the seaward boundary condition is sufficiently
close to the structure. This model provides a useful
engineering design tool with 1000 wave simulations
taking less than two minutes to run on a moderately
fast PC. Further work to extend the model to include

dispersive terms, helping to eliminate differences
between the physical and numerical wave heights,
will allow the seaward boundary to be located further
offshore.
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