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lving the class of extended Boussinesq equations is presented. Unlike previous
schemes, where the governing equations are integrated through time using a fourth-order method, a second-
order Godunov-type scheme is used thus saving storage and computational resources. The spatial derivatives
are discretised using a combination of finite-volume and finite-difference methods. A fourth-order MUSCL
reconstruction technique is used to compute the values at the cell interfaces for use in the local Riemann
problems, whilst the bed source and dispersion terms are discretised using centred finite-differences of up to
fourth-order accuracy. Numerical results show that the class of extended Boussinesq equations can be
accurately solved without the need for a fourth-order time discretisation, thus improving the computational
speed of Boussinesq-type numerical models. The numerical scheme has been applied to model a number of
standard test cases for the extended Boussinesq equations and comparisons made to physical wave flume
experiments.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Numerical modelling of free surface flows has received much
interest since the advancement of computing technology in the latter
half of the twentieth century enabled the solutions to fluid flow
equations to be approximated. Due to the complexity and computa-
tional resources required to solve the full Navier–Stokes equations, a
depth-averaging assumption is used to simplify the governing
equations so that numerical models can be of practical use. Depth-
averaged equations model free surface flows using mass conservation
and momentum equations where the velocity in the vertical direction
is assumed to be negligible. Perhaps the most popular depth-averaged
flow equations are the Shallow Water Equations (SWE). Numerical
solution techniques have been developed using finite-volume meth-
ods to solve the SWE and have shown to provide excellent agreement
with analytical solutions (Zhao et al., 1996; Mingham and Causon,
1998; Hu et al., 2000; Zhou et al., 2001; Hubbard and Dodd, 2002).
Unfortunately the SWE are not applicable for modelling wave
propagation in deeper water where dispersion begins to have an
effect on free surface flow. The range of applicability for flow equations
are categorized by the ratio of depth, d, to wavelength, L, as follows:
shallowwater d/L≤1/20; intermediate depth water 1/20≤d/L≤1/2 and
deep water d/LN1/2.

Peregrine (1967) derived a set of equations based on the work of
French mathematician Joseph Boussinesq (1842–1929) that intro-
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duced dispersion terms into a shallow water formulation. Although
the applicability of Peregrine's formulation was limited to shallow
water flows, subsequent attempts to extend the applicability of
Boussinesq-type models into intermediate depth water have been
successful. Witting (1984) expressed the depth-averaged momentum
equations in terms of the velocity at the free surface and dispersion
was added using a fourth-order Taylor expansion. Madsen et al. (1991)
and Madsen and Sørensen (1992) introduced third-order terms to
obtain a system of equations with dispersion properties closely
relating to linear wave theory. Nwogu (1993) assumed a quadratic
velocity profile in the vertical direction and derived a set of equations
where the horizontal velocity is calculated at an arbitrary depth.
Nwogu's formulation has been extended further to a fully nonlinear
model by Wei et al. (1995) and a layered approach that extends the
range of applicability to d/L≤5 was suggested by Lynett and Liu
(2004). The extended Boussinesq formulations of Madsen and
Sørensen and Nwogu have received the most attention in recent
years and a solution method is presented here to solve these
formulations. Extending this method to other Boussinesq formula-
tions based around these would not require significant additional
effort.

Previous solution methods for the extended Boussinesq-type
formulations have mainly involved the use of finite-differences.
Nwogu (1993) used a semi-implicit Crank–Nicolson scheme to
integrate his equations in time whilst central differences of the
same order as the derivatives in the equations was used for the spatial
discretisation. A simpler method was suggested by Wei and Kirby
(1995) where all first-order spatial derivatives were treated using
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fourth-order accurate finite-differences to ensure that the truncation
error of the numerical scheme was less than that of the dispersion in
the governing equations. The equations were marched through time
using a third-order Adams–Bashforth predictor and fourth-order
Adams–Moulton corrector that is iterated until convergence is
achieved. Shi et al. (2001) used a spatially staggered scheme together
with the Adams time stepping method that exhibits far less
computational noise than the non-staggered scheme used by Wei
and Kirby. Erduran et al. (2005) based their hybrid scheme on the
method of Wei and Kirby where a finite-volume method was used to
discretise the flux terms in the Boussinesq formulation of Madsen and
Sørensen. This hybrid scheme goes someway to providing amethod of
solving the Boussinesq-class of equations over a non-orthogonal
solution domain more suited for modelling real world coastal regions.
The solution method presented here is based upon the AMAZON
numerical solver for the SWE developed at the Centre for Mathema-
tical Modelling and Flow Analysis (CMMFA) at the Manchester
Metropolitan University (Hu et al., 1998).

Two popular extended Boussinesq formulations are presented in
Section 2 along with a method for rewriting them into a form where
they can be solved using a finite-volume method. The complete
numerical model is presented in Section 3. The model has been tested
against standard test cases for Boussinesq-type models: solitary wave
propagation over a flat bad channel; regular wave propagation and
reflection; regular wave propagation over a submerged bar and
random wave propagation up a sloping beach and interaction with a
seawall (Section 4).

2. Governing equations

In this section the extended Boussinesq formulations of Nwogu
(1993) and Madsen and Sørensen (1992) are presented and rewritten
into a form where they can be solved using a hybrid finite-volume/
finite-difference scheme. For clarity, the one-dimensional form of
Nwogu's formulation is used to explain the methodology here but it
can also be applied to other Boussinesq formulations in one or two
spatial dimensions.

2.1. Nwogu's Boussinesq formulation

Nwogu (1993) derived a system of equations that could be used to
model wave propagation in intermediate depth water by assuming a
quadratic velocity profile in the vertical direction. The solution vari-
ables in Nwogu's formulation are the water surface elevation, η, and
the horizontal velocity, uα (Fig. 1). The horizontal velocity is calculated
at an arbitrary depth zα. An optimum value of zα=0.531d, where d
denotes thewater depth defined as the distance between the still water
level (SWL) and the bed surface, was chosen by Nwogu so that the
dispersion properties of the governing equations most closely approx-
Fig. 1. Definition of solution variables.
imate those defined by linearwave theory. The one-dimensional form of
Nwogu's Boussinesq formulation is

ηt þ dþ ηð Þuα½ �x þ
zα
2
−
d2

6

� �
duαxx þ zα þ d

2

� �
d duαð Þxx

� �
¼ 0; ð1Þ

uαt þ gηx þ uαuαx þ zα
zα
2
uαxxt þ duαð Þxxt

h i
¼ 0; ð2Þ

where η is the water surface elevation above the SWL, uα is the
horizontal velocity at an arbitrary depth zα below the SWL and
g=9.81 ms−2 is the acceleration due to gravity.

Following the assumption suggested by Erduran et al. (2005) that
the bathymetry remains constant over time, Eqs. (1) and (2) can be
rewritten in terms of mass storage, h, and not the water surface
elevation η. The mass storage is defined by h=η+d, therefore

ηt ¼ h−dð Þt¼ ht−dt ¼ ht ; ð3Þ

and Nwogu's formulation can be rewritten using

ht þ huαð Þxþ
zα
2
−
d2

6

� �
duαxx þ zα þ d

2

� �
d duαð Þxx

� �
¼ 0; ð4Þ

uαt þ ghx−gdx þ uαuαx þ zα
zα
2
uαxxt þ duαð Þxxt

h i
¼ 0; ð5Þ

Collecting the time derivative terms in Eq. (5), Nwogu's Boussinesq
formulation can be represented in vector form:

Ut þ F Uð Þx¼ Sb þ Sd; ð6Þ

where U and F(U) are vectors containing the conserved variables and
fluxes respectively and are given by

U ¼ h
U uαð Þ

� �
; F Uð Þ ¼

hu

ghþ 1
2
u2
α

 !
; ð7Þ

where U(uα) is the velocity function

U uαð Þ ¼ uα þ zα
zα
2
uαxx þ duαð Þxx

h i
: ð8Þ

The vectors containing the source and dispersion terms, Sb and Sd,
are written as

Sb ¼ 0
gdx

� �
; ð9Þ

Sd ¼ −
z2α
2
−
d2

6

� �
duαxx þ zα þ d

2

� �
d duαð Þxx

� �
x

0

0
@

1
A: ð10Þ

2.2. Madsen and Sørensen's Boussinesq formulation

The extended Boussinesq equations derived by Madsen and Sørensen
(1992) are:

ηt þ huð Þx¼ 0; ð11Þ

huð Þtþ hu2� �
xþghηx þ ψx ¼ 0; ð12Þ

where h is the mass storage, u is the depth-averaged horizontal
velocity and ψ are the terms that model dispersion:

ψx ¼ − Bþ 1
3

� �
d2 huð Þxxt−Bgd3ηxxx−ddx

1
3

huð Þxtþ2Bgdηxx

� �
: ð13Þ

B is a free parameter that determines the dispersionproperties of the
system. Madsen and Sørensen (1992) suggested a value of B=1/15 for
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optimum dispersion properties when compared to linear wave theory.
Erduran et al. (2005) used Eq. (3) to rewrite Eqs. (11)–(13) in vector form

U ¼ h
U huð Þ

� �
; F Uð Þ ¼

hu

hu2 þ 1
2
gh2

 !
; ð14Þ

where

U huð Þ ¼ hu− Bþ 1
3

� �
d2 huð Þxx−

1
3
ddx huð Þx: ð15Þ

The source and dispersion terms for the rewritten form of Madsen
and Sørensen formulation are

Sb ¼ 0
ghdx

� �
; ð16Þ

Sd ¼ 0
Bgd3ηxxx þ 2Bgd2dxηxx

� �
: ð17Þ

3. Numerical scheme

The numerical scheme used to solve the governing equations is a
fourth-order in space, second-order accurate in time hybrid finite-
difference/finite-volume scheme.

3.1. Spatial discretisation

The spatial discretisations of the flux, source and dispersion terms
are achieved through a combination of finite-volume and finite-
difference approximations. The flux terms, F(U), are solved using a
finite-volume discretisation whereas the bed source, Sb, and disper-
sion terms, Sd, are discretised using centred finite-differences.

3.1.1. MUSCL reconstruction
The values of the flux terms at the cell centres are calculated by

averaging the flux values at the interfaces of a finite-volume cell. The
values of the conserved variables at the interfaces are calculated using
a Monotonic Upstream Scheme for Conservation Laws (MUSCL)
reconstruction technique (van Leer, 1979). Consider the piecewise
continuous representation of U(x, t) given in Fig. 2. The gradient across
cell i is determined using the values of the neighbouring cells i−1 and
i+1. Calculating the interface values iF 1

2 using this gradient may result
in under/overshoots which will cause spurious oscillations in the
solution. MUSCL schemes eliminate overshoots by limiting the
gradient across the finite-volume cell.
Fig. 2. Piecewise continuous MUSCL reconstruction.
It was noted in Wei and Kirby (1995) that a fourth-order accurate
treatment of the first-order derivatives was required so that the
truncation errors in the numerical scheme are smaller than the
dispersion terms present in the model. Erduran et al. (2005) used a
fourth-order MUSCL reconstruction first used by Yamamoto et al.
(1998) to calculate interface values in their Navier–Stokes solver. The
values of the conserved variables to the left- and right-hand side of the
cell interface iþ 1

2 are calculated using the following:

UL
iþ1

2
¼ Ui þ

1
6

ϕ r1ð ÞΔ⁎Ui−12
þ 2ϕ

1
r1

� �
Δ⁎Uiþ1

2

� �
; ð18Þ

UR
iþ1

2
¼ Uiþ1−

1
6

2ϕ r2ð ÞΔ⁎Uiþ1
2
þ ϕ

1
r2

� �
Δ⁎Uiþ3

2

� �
; ð19Þ

where ϕ(ri) is the van Leer slope limiting function

ϕ rið Þ ¼ ri þ jrij
1þ ri

; ð20Þ

and

r1 ¼
Δ⁎Uiþ1

2

Δ⁎Ui−12

; r2 ¼
Δ⁎Uiþ3

2

Δ⁎Uiþ1
2

: ð21Þ

The values ofΔ⁎U are calculated using a third-order minmod limiter

Δ⁎Uiþ1
2
¼ ΔUiþ1

2
−
1
6

ΔU iþ3
2
−2ΔU iþ1

2
þ ΔU i−12

� 	
; ð22Þ

where

ΔU i−12
¼ minmod ΔUi−12

;ΔUiþ1
2
;ΔUiþ3

2

� 	
; ð23aÞ

ΔU iþ1
2
¼ minmod ΔUiþ1

2
;ΔUiþ3

2
;ΔUi−12

� 	
; ð23bÞ

ΔU iþ3
2
¼ minmod ΔUiþ3

2
;ΔUi−12

;ΔUiþ1
2

� 	
; ð23cÞ

and

ΔUiþ1
2
¼ Uiþ1−Ui: ð24Þ

The minmod limiter is given by

minmod a; b; cð Þ ¼ smax 0;min jaj;2sb;2scð Þ½ �; ð25Þ

where s=sign(b). In order to avoid numerical errors that are caused by
the differences between the bed slope and the slope of the water
surface elevation, Zhou et al. (2001) proposed a Surface Gradient
Method (SGM) for their SWE solver where the MUSCL reconstruction
for the continuity equation is applied to the water surface elevation
and not the mass storage as used previously. The numerical scheme
presented here uses the SGM so the slope limited gradients are cal-
culated using Eqs. (18)–(25) applied to η=h+zb for the continuity
equation (where zb is the bed surface elevation at the cell centre
calculated by averaging the bed surface elevations at the cell inter-
faces). The values of h at each interface are then calculated by simple
rearrangement.

3.1.2. Dispersion terms
The spatial derivatives present in thedispersion termsare discretised

using fourth-order central difference approximations for first-order
derivatives and second- and third-order central differences for the
second- and third-order spatial derivatives. The use of the central
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differences results in the following discretisation for the dispersion
terms in Nwogu's formulation

Sd ¼ di
12Δx3

fi−2 þ 8fi−1−8fiþ1 þ fiþ2ð Þ; ð26Þ

where

fi
z2αi
2

−
d2i
6

� �
uαi−1−2uαi þ uαiþ1ð Þ

þ zαi þ
di
2

� �
duαð Þi−1−2 duαð Þiþ duαð Þiþ1


 �
: ð27Þ

The dispersion terms in Madsen and Sørensen's formulation are
discretised using (Erduran et al., 2005)

Sd ¼ Bgd3i
2Δx3

−ηi−2 þ 2ηi−1−2ηiþ1 þ ηiþ2

� �
þ Bgd2i
6Δx3

di−2−8di−1 þ 8diþ1−diþ2ð Þ ηi−1−2ηi þ ηiþ1

� �
: ð28Þ

3.1.3. Bed source terms
The bed source terms are discretised using second-order centred

finite-difference approximations. For Nwogu's formulation this gives

Sb ¼ g
Δx

zbiþ1−zbi−1ð Þ; ð29Þ

and for Madsen and Sørensen's formulation

Sb ¼ ghi
Δx

zbiþ1−zbi−1ð Þ; ð30Þ

where zbi±1 are the bed surface elevations at the cell interfaces.

3.2. Time integration

The integration of the governing equations through time is
achieved by the MUSCL-Hancock scheme (van Leer, 1985), a second-
order accurate Godunov-type scheme. The MUSCL-Hancock scheme
uses a two-stage predictor/corrector method. The predictor step is
used to determine the intermediate values over a half time step

Unþ1
2 ¼ Un−

Δt
2A

∑
M

m¼1
F Umð Þn�nm þ A Sb−Sdð Þ

� �
; ð31Þ

where n and nþ 1
2 denote the current and intermediate values, A is the

area of the finite-volume cell, M is the number of sides of the finite-
volume cell, nm is the outward pointing normal vector to side m and
Δt is the time step.

The corrector step that provides the fully conservative solution
over one time step is given by

Unþ1 ¼ Un−
Δt
A

∑
M

m¼1
F UL

m;U
R
m

� �nþ1
2�nm þ A Sb−Sdð Þ

� �
; ð32Þ

where F(Um
L , Um

R ) is the flux vector function at the cell interface m, the
values of which are found by solving a local Riemann problem that
occurs at each interface. Um

L and Um
R are the values of the conserved

variables to the left- and right-hand side of the cell interface that are
found after applying the MUSCL reconstruction to the predictor
solution using gradients from the predictor step.

The value of the time step, Δt, that is used to integrate the
governing equations over time is dependent upon the CFL condition.
For the one-dimensional solver

Δt ¼ mmin
i ð Δx

juij þ
ffiffiffiffiffiffiffi
ghi

p Þ ð33Þ

where ν is the Courant number, set here to 0.65 to ensure that the CFL
condition is always maintained.
3.3. Riemann fluxes

The corrector stage of the Hancock scheme requires the solution to
a local Riemann problem at each cell interface. The Riemann solver
used here was developed by Harten et al. (1983) (HLL) and has shown
to be accurate and robust in practice (Mingham and Causon, 1998; Hu
et al., 2000; Shiach et al., 2004). The HLL Riemann solver assumes
there exists a constant region between the fastest and slowest moving
waves. The flux solutions at the cell interfaces are calculated using

F UL
m;U

R
m

� � ¼ sRF UL� �
−sLF UR� �þ sLsR UR−UL� �

sR−sL
; ð34Þ

where sL and sR are the slowest and fastest wave speeds calculated
using Toro (1992)

sL ¼ min uL−
ffiffiffiffiffiffiffiffi
ghL

p
;us−

ffiffiffiffiffi
ϕs

p� 	
; ð35aÞ

sR ¼ max uR−
ffiffiffiffiffiffiffiffi
ghR

p
;us þ

ffiffiffiffiffi
ϕs

p� 	
; ð35bÞ

where

us ¼ uL þ uR

2
þ

ffiffiffiffiffiffiffiffi
ghL

p
−
ffiffiffiffiffiffiffiffiffi
ghR;

p
ð36aÞ

ffiffiffiffiffi
ϕs

p
¼

ffiffiffiffiffiffiffiffi
ghL

p
þ

ffiffiffiffiffiffiffiffi
ghR

p
2

þ uL−uR

4
; ð36bÞ

and (h, u)L,R are left- and right-hand side interface values.

3.4. Evaluation of velocities

The predictor and corrector stages presented in Eqs. (31) and (32)
update the values of the velocity function,U(uα) andU(hu), given by Eqs.
(8) and (15) for the respective formulations. Therefore, the values of the
velocities need to be extracted from U(uα) and U(hu) after U has been
updated by solving a tri-diagonal system resulting from the application
of second-order central differences for the spatial derivatives.

3.4.1. Nwogu's formulation
The second-order central accurate difference approximation of a

second-order derivative is

uxx ¼ ui−1−2ui þ uiþ1

Δx2
: ð37Þ

Using Eq. (37) to discretise the velocity function, Eq. (8), results in

U uαð Þi ¼ uαi þ zαi½ zαi2 uαi−1−2uαi þ uαiþ1

Δx2

� �

þ di−1uαi−1−2diuαi þ diþ1uαiþ1

Δx2

� ��; ð38Þ

which factorises to give

U uαð Þi¼
z2αi

2Δx2
þ zαidi−1

Δx2

� �
uαi−1 þ 1−

z2αi
Δx2

−
2zαidi
Δx2

� �
uαi

þ z2αi
2Δx2

þ zαidiþ1

Δx2

� �
uαiþ1: ð39Þ

Eq. (39) can then be written using the matrix equation

b1 c1
a2 b2 c2

O O O
an−1 bn−1 cn−1

an bn

0
BBBB@

1
CCCCA

uα1
uα2
v

uαn−1
uαn

0
BBBB@

1
CCCCA ¼

U uαð Þ1
U uαð Þ2

v
U uαð Þn−1
U uαð Þn

0
BBBB@

1
CCCCA; ð40Þ
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where the diagonal elements are:

ai ¼
z2αi

2Δx2
þ zαidi−1

Δx2
; ð41aÞ

bi ¼ 1−
z2αi
Δx2

−
2zαidi
Δx2

; ð41bÞ

ci ¼
z2αi

2Δx2
þ zαidiþ1

Δx2
: ð41cÞ

The diagonal elements are time independent and the coefficient
matrix can be pre-inverted and multiplied by U(uα) where required.
However, numerical experience has found that the application of the
Thomas algorithm to solve the tri-diagonal system after the predictor
and corrector stages is computationally more efficient.

3.4.2. Madsen and Sørensen's formulation
The velocity function for Madsen and Sørensen's Boussinesq

formulation requires the approximation of a first-order derivative.
Here, the following second-order accurate central difference is used

ux ¼ −ui−1 þ uiþ1

2Δx
: ð42Þ

Using Eqs. (37) and (42) to discretise the velocity function, Eq. (15),
results in

U huð Þi ¼ huð Þi− Bþ 1
3

� �
d2i

huð Þi−1−2 huð Þiþ huð Þiþ1

Δx2

� �

−
1
3
di

−di−1 þ diþ1

2Δx

� �
− huð Þi−1þ huð Þiþ1

2Δx

� �
;

ð43Þ

which can be factorised to give

U huð Þi ¼ −
Bþ 1=3ð Þd2i

Δx2
þ di
12Δx2

−di−1 þ diþ1ð Þ
� �

� huð Þi−1þ 1þ 2 Bþ 1=3ð Þd2i
Δx2

� �
huð Þi

þ −
Bþ 1=3ð Þd2i

Δx2
−

di
12Δx2

−di−1 þ diþ1ð Þ
� �

huð Þiþ1:

ð44Þ

Therefore, the diagonal elements for Madsen and Sørensen's
formulation are:

ai ¼ −
Bþ 1=3ð Þd2i

Δx2
þ di
12Δx2

−di−1 þ diþ1ð Þ; ð45aÞ

bi ¼ 1þ 2 Bþ 1=3ð Þd2i
Δx2

; ð45bÞ

ci ¼ −
Bþ 1=3ð Þd2i

Δx2
−

di
12Δx2

−di−1 þ diþ1ð Þ: ð45cÞ

3.5. Boundary conditions

The treatments of two types of boundary conditions are presented
here: transient flow and solid wall boundary conditions. The fourth-
order MUSCL scheme requires values from the three closest cells
either side of cell i. Therefore, at each boundary three ghost nodes are
needed, the values of which are determined by application of a
boundary condition. The node numbering convention for the ghost
nodes is defined in Fig. 3.
Fig. 3. Node numbering convention near the left-hand boundary.
Transient flow boundary conditions should allow all energy propa-
gating towards aboundary topass through so that nowaves are reflected
back into the solution domain. The values of the ghost cells at the left-
handboundary for the transientflowboundary condition are as follows:

h;uð Þ−3¼ h;uð Þ3; ð46aÞ

h;uð Þ−2¼ h;uð Þ2; ð46bÞ
h;uð Þ−1¼ h;uð Þ1: ð46cÞ

The application of Eqs. (46a)–(46c) alone will cause some
reflection back into the solution domain due to dispersive effects. In
order to completely absorb all energy, sponge layers (Wei and Kirby,
1995) are also used where velocity is gradually removed from the
momentum equation near the boundary.

Solid wall boundaries are modelled using the following:

h−3 ¼ h3; u−3 ¼ −u3; ð47aÞ

h−2 ¼ h2; u−2 ¼ −u2; ð47bÞ

h−1 ¼ h1; u−1 ¼ −u1: ð47cÞ

Application of Eqs. (47a)–(47c) ensures that u×n=0 at the
boundary thus all energy is reflected back into the solution domain.

4. Numerical results

The numerical scheme presented in Section 3 has been applied to
model standard test cases designed to validate the numerical treatment
of the dispersion terms in the governing equations: solitary wave
propagation, regularwave propagation, regularwave propagationover a
submergedbarandpropagationupa slopingbeach and reflection froma
seawall. The calculations were also repeated using the fourth-order
solver used in existingBoussinesqmodels (Wei andKirby,1995; Erduran
et al., 2005) and it was found that the second-order solver produced
values indistinguishable from the fourth-order scheme.

4.1. Solitary wave propagation

Solitary wave propagation was used by Wei and Kirby (1995) to
test their finite-difference scheme based solver for Nwogu's Boussi-
nesq formulation. A solitary wave maintains its speed, shape and
amplitude as it travels down a flat-bottomed channel due to an exact
balance between the nonlinear terms that steepen the wave, and the
dispersion terms that flatten the wave. The initial values of η and uα
are defined by

η ¼ A1sech
2 B x−Ctð Þ½ � þ A2sech

4 B x−Ctð Þ½ �; ð48Þ

uα ¼ Asech2 B x−Ctð Þ½ �; ð49Þ

where A, B, A1 and A2 are constants defined using

A ¼ C2−gd
C

; ð50aÞ

B ¼ C2−gd
4d2 α þ 1=3ð Þgd−αC2½ �
� �1=2

; ð50bÞ

A1 ¼ C2−gd
3 α þ 1=3ð Þgd−αC2½ � d; ð50cÞ

A2 ¼ −
C2−gd
� �2
2gdC2

α þ 1=3ð Þgdþ 2αC2

 �

α þ 1=3ð Þgd−αC2½ � d: ð50dÞ



Fig. 4. Water surface profiles of the solitary wave propagating down a channel (d=0.45 m, a=0.045 m).
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The phase speed C is calculated by finding the roots of the
polynomial

2α
C2

gd

� �3

− 3α þ 1
3
þ 2α

a
d

� �
C2

gd

� �2

þ2
a
d

α þ 1
3

� �
C2

gd

� �
þ α þ 1

3
¼ 0; ð51Þ

where a is the amplitude of the solitary wave and α=−0.390.
The test case here is identical to that used byWei and Kirby (1995)

in order to make comparisons between the two solution methods and
to demonstrate that the scheme can accurately solve the dispersion
terms present in the governing equations. The channel is 450 m in
length with constant depth of d=0.45 m and is discretised using a
Fig. 5. Comparison of the numerical solitary wave solutions at tim
spatial step of Δx=0.1 m. The solitary wave with an amplitude of
a=0.045m is generated near the left-hand boundary and travels down
the channel at a phase speed of C=2.203 ms−1.

The solutions obtained using the second-order Hancock scheme at
times t=40, 80, 120, 160 and 200 s are shown in Fig. 4. The water
surface elevations were deliberately offset to show the evolution of
the wave in time and to allow for comparisons with Wei and Kirby
(1995). The shape and amplitude of the solitary wave remain constant
indicating that the numerical scheme has successfully retained the
dispersion present in the governing equations. The numerical solution
was compared to the analytical solution over two instances in time
(t=40 and t=160 s) in detail along with solutions for solitary waves
e t=40 s (- - -), t=160 s (∙∙∙) and the analytical solution (—).



Fig. 6. Regular wave propagation: plots of the normalised water surface at times (top to bottom) t=10, 20, 40 and 80 s.

38 J.B. Shiach, C.G. Mingham / Coastal Engineering 56 (2009) 32–45
with amplitudes a=0.09 m and a=0.135 m in Fig. 5. The numerical
results show excellent agreement with the analytical solution for
a=0.045 m and a=0.09 m. The numerical solutions for the larger
wave, a=0.135 m, shows that the predicted phase speed is smaller
than that of the analytical phase speed which has also been noted
previously by Wei and Kirby.

4.2. Regular wave propagation

Wave generation in the model presented here is achieved by using
an internal wave generation method. A source term in the form of an
oscillating Gaussian curve centred at xs is added to the continuity
equation at each time step to produce perturbations in the water
Fig. 7. Regular wave propagation and reflection: composite plots of the normalised water su
surface. The width of the source function is assumed to be half the
wavelength of the peak wave in the sequence. Details of the source
function method can be found in Wei et al. (1999).

To test wave generation and the treatment of transient flow and
reflective boundary conditions, the numerical scheme has been
applied to model regular wave propagation over a flat bed. The tests
applied here were used byWei et al. (1999) where the source function
method used here was first derived. The first test consists of a 50 m
long channel with a SWL of 0.5 m. Regular sinusoidal waves with
amplitude, a=0.025 m, and period, T=1.0 s, are generated within the
solution domain by a source function method centred at xs=25 m. The
solution domain is discretised into 2500 cells with a spatial width of
Δx=0.02 m. Two sponge layers of width 5 m are placed at the left- and
rface at ti, ti+T/4, ti+T/2 and ti+3T/4 for times (top to bottom) ti=40, 80, 120 and 160 s.



Table 1
Wave configurations used by Beji and Battjes (1993)

Configuration Wave height (m) Wave period (s)

(a) 0.020 2.020
(b) 0.029 2.525
(c) 0.041 1.010

Fig. 8. Regular wave propagation over a submerged bar: definition of bed topography.
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right-hand boundaries to absorb the energy propagating towards the
boundaries.

Plots of the normalised water surface elevation at times t=10, 20,
40 and 80 s are shown in Fig. 6. The computed water surface elevation
shows that the source function method generates waves with the
correct amplitude and period. The plots of the water surface at t=40
and 80 s are almost identical, showing that no energy is reflected back
into the solution domain and that the sponge layers have performed
well. The waves generated have a relative depth ratio of d/L≈0.33,
within the range of applicability of the extended Boussinesq equations
and the numerical model has no difficulty in accurately modelling
propagation.

In order to test the solid wall boundary condition the regular wave
propagation test was repeated but with the sponge layer at the right-
hand boundary removed and the solid wall boundary applied. The
centre of the source function was moved to xs=23.9 m so that it was
exactly 17 wavelengths from the right-hand boundary. Composite
plots of the normalised water surface elevations at 4/T intervals: t= ti,
t= ti+T/4, t= ti+T/2 and t= ti+3T/4 where ti=40, 80, 120 and 160 s are
shown in Fig. 7.

The plot at t=40 s shows the rightward travelling waves have
begun to be reflected from the right-hand boundary and the
leftward travelling waves are absorbed by the sponge layer. At
t=80 s the reflected waves have propagated past the source function
producing standing waves of twice the incident wave amplitude,
indicating the solid wall boundary condition is performing well. The
water surface to the left of the source function shows that the
reflected waves have passed through the source function without
affecting the generation of the incident waves and the sponge layer
is able to absorb both the waves generated by the source function
and the reflected waves.

4.3. Regular wave propagation over a submerged bar

A common test case of the Boussinesq-class of models is the
modelling of regular wave propagation over a submerged bar. This test
was first used by Dingemans (1987) to verify Delft Hydraulics'
numerical model HISWA, and has since been used to compare the
performance of various different Boussinesq-typemodels (Dingemans,
1994; Gobbi and Kirby, 1999). The experiments were repeated by Beji
and Battjes (1993) and the values recorded are used for comparison
here. The test configuration consists of a 23 m channel with a water
depth of d=0.4 m. The bathymetry consists of a 1:20 front slope and a
1:10 back slope separated by a level plateau 2 m in length (see Fig. 8).

The wave evolution occurs as follows: nonlinear effects cause the
waves propagating along the front slope to steepen, whilst the back
slope causes the wave train to breakup into independent waves
travelling at their own speeds. For more details see Dingemans
(1994); Gobbi and Kirby (1999). The resolution of the breakup of the
wave train is a challenging test for the treatment of the dispersion
terms in a Boussinesq-type model. Beji and Battjes (1993) per-
formed their experiments over three different wave configurations
(Table 1). The waves generated using configurations (a) and (c) are
non-breaking, whereas configuration (b) generates spilling breakers
over the plateau. Depth gauges placed along the flume at x=2.0, 5.7,
10.5, 13.5, 15.7 and 19.0 m record the water surface elevation over
time.

The numerical scheme presented in Section 3 for solving both
Nwogu's and Madsen and Sørensen's Boussinesq formulations is used
tomodel wave propagation. The numerical flume is discretised using a
spatial step of Δx=0.02 m. An internal source function centred at
xs=0.0 m is used to generate the regular waves within the solution
domain. Sponge layers are employed at the left- and right-hand
transient flow boundaries to ensure that all energy is removed and no
waves are reflected back into the solution domain.

The water surface elevations for the depth gauges from the
experiment and the numerical results using both Nwogu's and
Madsen and Sørensen's Boussinesq formulations are compared in
Figs. 9, 10 and 11 for wave configurations (a), (b) and (c) respectively. It
should be noted that the phase error in the gauge placed at x=5.7 m is
attributed to an error in the recording of the experiments. A
quantitative analysis has been undertaken by calculating the relative
error between the numerical and experimental water surfaces at 0.1 s
intervals for each gauge. These error values are then averaged over the
50 s simulation period to give a single value that indicates how closely
the numerical model predicts the experimental water surface
elevations (Tables 2 and 3).

Both Boussinesq formulations show reasonable agreement with the
experimental water surface for all three wave configurations. The wave
propagation over the flat bed and the shoaling as the waves travel over
the forward slope is accurately modelled as the generated waves have a
depth to wavelength ratio of d/L=0.11, 0.08 and 0.27 for wave
configurations (a)–(c) respectively, well within the range of applicability
of the governing equations. The breakup of the wave train is shown in
the depth gauges at x=13.5 and x=15.7 m, where both Boussinesq
formulations have modelled this phenomenon. The modelling of wave
configuration (c) shows the worst agreement where the depth to
wavelength ratio is larger. Of the two formulations tested, Maden and
Sørensen's shows marginally better agreement than Nwogu's formula-
tion although it has difficulty resolving thepeaks of thewaves for gauges
x=13.5, 15.7 and 19.0 m.

4.4. Random wave propagation and reflection

The final test that was performed using the numerical scheme
presented here is the modelling of random wave propagation and



40 J.B. Shiach, C.G. Mingham / Coastal Engineering 56 (2009) 32–45
reflection from a vertical seawall. This test is based upon a series of
experiments conducted at Edinburgh University's wave flume facility
by Pearson et al. (2000) and subsequently modelled by Shiach et al.
Fig. 9. Regular wave propagation over a submerged bar: water surface elevations recorded at de
(2004, 2005). The experiments were originally designed to study
violent wave overtopping but are used here as a test of the source
function to generate waves from a given time series.
pth gauges placed 2.0, 5.7,10.5,13.5,15.7,19.0m fromwave generator for configuration (a).
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The flume used in the Edinburgh experiments is defined in Fig. 12.
The operating water depth of SWL=0.7 m is used with a basic
bathymetry consisting of a near vertical 10:1 seawall that is placed on
Fig. 10. Regular wave propagation over a submerged bar: water surface elevations record
configuration (b).
a 1:10 sloping beach so that the depth of the still water at the toe of the
seawall is dtoe=0.09 m. Waves are generated using an absorbing flap-
type wave maker and are sampled from the JONSWAP (Hasselmann
ed at depth gauges placed 2.0, 5.7, 10.5, 13.5, 15.7, 19.0 m from wave generator for
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et al., 1973) spectrum with a peak enhancement parameter γ=3.3,
significant wave height Hs=0.063 m and peak wave period Tp=1.23 s.
The waves generated by the wave maker were such that impacting
Fig. 11. Regular wave propagation over a submerged bar: water surface elevations record
configuration (c).
waves would dominate at the seawall. Eight depth gauges are placed
throughout the flume at locations 11.21, 8.0, 6.75, 5.5, 4.25, 3.0, 2.0 and
1.0 m from the seawall. The water surface elevations recorded by the
ed at depth gauges placed 2.0, 5.7, 10.5, 13.5, 15.7, 19.0 m from wave generator for



Table 2
Regular wave propagation over a submerged bar: error values for Nwogu's Boussinesq
formulation

Gauge (a) (b) (c) Average

2.0 0.0016 0.0036 0.0172 0.0075
5.7 0.0128 0.0153 0.0552 0.0278
10.5 0.0022 0.0063 0.0222 0.0102
13.5 0.0021 0.0079 0.0199 0.0100
15.7 0.0029 0.0129 0.0178 0.0112
19.0 0.0051 0.0123 0.0175 0.0116
Average 0.0045 0.0097 0.0250 0.0130

Table 3
Regularwavepropagationover a submerged bar: error values forMadsen and Sørensen's
Boussinesq formulation

Gauge (a) (b) (c) Average

2.0 0.0015 0.0035 0.0157 0.0069
5.7 0.0135 0.0138 0.0545 0.0273
10.5 0.0023 0.0054 0.0160 0.0079
13.5 0.0026 0.0087 0.0159 0.0091
15.7 0.0033 0.0108 0.0135 0.0092
19.0 0.0086 0.0103 0.0109 0.0099
Average 0.0053 0.0088 0.0211 0.0117
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depth gauge 11.21 m from the seawall are used by the source function
method in the numerical model. The numerical model uses Madsen
and Sørensen's Boussinesq formulation with a numerical flume
extending from x=−10.0 m to x=11.21 m and the source function
centred at xs=0.0 m. A sponge layer is placed at the left-hand
boundary to absorb any waves propagating through the source
function, and a solid wall boundary condition is used at the right-
hand boundary to model the vertical seawall.

The numerical predictions of the water surface for the remaining 7
depth gauges within the numerical flume are compared to the
corresponding values recorded by the experiment in Fig. 13. The plots
for the gauge nearest to the source function (placed 8.0 m from
seawall), show that the source function method can accurately
produce waves from a given time series allowing for wave-by-wave
modelling of physical experiments, so long as the recording
commences prior to wave generation. All the depth gauges show
reasonable agreement between the numerical and experimental
water surface. Those gauges closest to the seawall show a tendency
for the numerical model to slightly over predict thewave crests. This is
attributed to the fact that thewaves generated in the experimentwere
designed to break at or near the structure and no special treatment of
wave breaking was included in the numerical model.

5. Computational resources

The tests that have been used to validate the second-order solver
have been repeated with identical configurations using the fourth-
order Adams based solver, first used by Wei and Kirby (1995) to solve
Nwogu's formulation and subsequently by Lynett et al. (2002) and
Fig. 12. Sketch of the wave flume use
Erduran et al. (2005) in their hybrid model. The Adams based method
consisted of a third-order Adams–Moulton predictor and fourth-order
Adams–Bashforth corrector that is iterated until convergence. Typi-
cally the corrector stage requires no more than two iterations to reach
convergence unless instabilities occur (usually at the boundaries or
source function). The iteration of the corrector stage in the Adams
based method, in addition to the calculation of the spatial derivatives
at the four different time steps, means that the Hancock scheme
requires fewer intermediate calculations to update the solution
variables and therefore improves the speed of the numerical model.

The time taken to perform the validation tests for both the
Hancock and Adams schemes are given in Table 4. All calculations
were performed using an Intel Core Duo processor running at a clock
speed of 2 GHz.

6. Conclusions

A hybrid finite-volume/finite-difference scheme that uses a
second-order Godunov-type scheme to integrate the extended
Boussinesq equations in time was presented. The momentum
equation in the extended Boussinesq formulation derived by Nwogu
(1993) was rewritten so that the mass storage becomes a solution
variable instead of the water surface elevation, following the method
used previously by Erduran et al. (2005) for the Boussinesq
formulation by Madsen and Sørensen (1992). The flux terms were
solved using a finite-volumemethod that uses a fourth-order accurate
MUSCL reconstruction technique for the calculation of the conserved
variables at the cell interfaces. The terms that model the changes in
the bed topography and dispersion are discretised using up to fourth-
order accurate central differences. The Hancock scheme, a second-
order predictor corrector method, is employed to integrate the
governing equations in time.

The numerical model was validated against standard test cases for
the extended Boussinesq equations. Nwogu's formulationwas used to
model solitary wave propagation along a flat flat-bottomed channel.
There was very good agreement between the numerical water surface,
the analytical water surface and the results published by Wei and
Kirby (1995) for their finite-difference based scheme. Wave genera-
tion and the treatment of transient and solid wall boundary conditions
were tested using regular wave propagation. The source function
method was shown to produce waves of the correct amplitude,
wavelength and period. Standing waves of twice the amplitude to the
generated waves were produced by the solid wall boundary indicating
that there was no flow across the solid wall boundary. Both Nwogu's
and Madsen and Sørensen's formulation were used to model regular
wave propagation over a submerged bar. This test case has been used
in numerous studies to compare different Boussinesq-type models.
The two models showed good agreement with experimental depth
gauge data and were able to resolve the breakup of thewave train that
occurs after the waves have propagated over the bar. A quantitative
analysis using relative errors showed that Madsen and Sørensen's
formulation performed slightly better than Nwogu's formulation.
Finally the numerical scheme was used to model small scale physical
d in the Edinburgh experiments.



Fig. 13.Water surface comparisons between numerical model (red line) and Edinburgh experiments (blue line): depth gauges places at (top to bottom) 8.0, 6.75, 5.5, 4.75, 3.0, 2.0 and
1.0 m from seawall. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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experiments consisting of random wave propagation up a sloping
beach and reflection from a vertical seawall. An analysis of depth
gauge data shows that the source function method could generate
waves from an inputted time series.

The test cases used for validation were repeated using a fourth-
order Adams based method to integrate the governing equations in
time. This has become the de-facto method for Boussinesq numerical
models (Wei and Kirby, 1995; Lynett and Liu, 2004; Erduran et al.,
2005). However, it was found that the use of the second-order
Table 4
Computing time(s) required for the Adams and Hancock solvers

Test Adams Hancock Speed up

Solitary wave propagation 1075.988 585.443 1.84
Regular wave propagation 709.350 330.500 2.15
Regular wave reflection 1407.818 573.147 2.46
Submerged bar 625.094 213.906 2.92
Edinburgh experiments 326.952 123.491 2.65
Hancock scheme produced results indistinguishable from those using
the Adams scheme. In addition, the corrector stage in the Hancock
scheme does not require iterating until convergence nor values from
two previous time steps unlike the Adams based scheme thus saving
storage and computational effort. An analysis of the computing time
required for the test cases showed that the Hancock solver is 2 to 3
times faster than the Adams based scheme.

Further studies will involve the use of the hybrid scheme to model
wave propagation in near shore regions and wave run-up and
overtopping of coastal structures. The current model is written in
such a way that implementing Boussinesq-type dispersion into
existing SWE based models in two-dimensions is possible (Causon
et al., 2000).
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