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An existing numerical model of wave run-up and overtopping based on the shallow
water equations (SWE) has been extended to model waves in deeper water using
Nwogu’s formulation of the Boussinesq equations. This hybrid model uses a high
resolution finite volume method to solve the SWE whilst a fourth-order accurate
finite difference method is used to solve the Boussinesq equations. The numerical
model has been used to predict wave heights and overtopping discharges of a series
of experiments that focus on violent wave overtopping. The numerical model
provided good predictions for the wave heights throughout the domain with a
tendency to slightly under-predict the wave heights near the boundary of the two
models. The overtopping discharge volumes calculated by the model over-predict
those of the physical experiment.

1. Introduction

Overtopping of coastal structures by waves represent a hazard to buildings,
cars and, most importantly, people. As a result, overtopping has been
extensively studied in the last 30 years in order to provide guidance for
the construction of sea defences based upon field observations and physical
models. In particular, violent overtopping of seawalls was the focus of the
VOWS project (Violent Overtopping by Waves at Seawalls). Violent wave
overtopping occurs when waves impact against seawalls throwing water up
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and over the top (Fig. 1) causing the water to overtop at speeds much larger
than normal pulsating overtopping,.

Figure 1. Violent wave overtopping event: Whitby, N. Yorks, U.K.

Previous studies include those by Franco et al. (1994) and Owen (1982)
where data for overtopping volumes for non-breaking waves (pulsating or
non-impulsive conditions) on sloping and vertical structures are presented.
Goda et al. (1975) included violent (or impacting) conditions as well as
pulsating conditions but these were not compared directly. More recently,
Besley et al. (1998) and Pearson et al. (2001) have provided guidance
on mean and wave-on-wave overtopping volumes under violent conditions
based upon field observations and physical models.

2. Numerical Model

The use of computers has allowed the numerical solution of equations that
describe fluid flow to provide engineers with an alternative to small scale
physical models. These numerical models can provide coastal engineers
with wave run-up and overtopping predictions without the time and cost
associated with physical experiments and field observations. Ideally the full
Navier-Stokes equations would provide a good choice of governing equations
on which to base such a model. However, present numerical models based
upon the full Navier-Stokes equations require extensive computational re-
sources. A simplified form of the Navier-Stokes equations are the shallow
water equations (SWE). Use of the SWE can drastically reduce the com-
putation time required for a numerical model wave run-up and overtopping
and therefore may represent a usable alternative to the Navier-Stokes equa-
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tions.

Existing numerical models of overtopping based on the shallow water
equations include HR Wallingford’s ANENOME model developed by Dodd
(1998) and ODIFLOCS developed by van Gent (1994) at Delft Hydraulics.
ANENOME and ODIFLOCS have been used to model run-up and over-
topping on shallow sloping structures (Richardson et al. 2002 , Clarke and
Damgaard, 2002 } but so far neither model has been used to model over-
topping of near vertical structures. Another model based upon the SWE
is AMAZON developed at the Manchester Metropolitan University (Ming-
ham and Causon 1998 , Hu et al. 2000 ). AMAZON has been used to model
overtopping of both shallow sloping structures (Hu et al, 2000 , Causon et
al. 2000 ) and violent overtopping of near vertical structures (Shiach et al.
2004 , Richardson et al. 2001 ). Despite shallow water models providing
good predictions of overtopping discharges for particular cases, due to the
absence of terms that model dispersion, they provide poor predictions of
wave propagation where the relative depth ratio (h/L, where h is the water
depth and L is the wavelength) is larger than 0.05. This has been over-
come previously by reducing the computational domain so that only the
area immediately seaward of the structures is modelled.

To overcome this shortcoming in shallow water models, an extended
form of the Boussinesq equations has been used to model wave propagation
in intermediate depth water (0.05 < hA/L < 0.5) allowing the seaward
boundary of the numerical model to extended out further and therefore
increase the applicability of the model. This new hybrid model has been
used to provide wave run-up and overtopping discharge comparisons to the
VOWS experiments performed at Edinburgh University.

The numerical model used here is a hybrid of the non-linear shallow wa-
ter equations (SWE) and Nwogu’s Boussinesq equations. The SWE are only
applicable for a relative depth of h/L < 0.05 whereas Nwogu’s Boussinesq
equations have been shown to have a range of applicability of 0 < h/L < 0.5
(Nwogu, 1993). However, the SWE are quicker and easier to solve than the
Boussinesq equations and do not require any special treatment for the case
where the bed topography is above the still water level. Therefore the
numerical model uses the Boussinesq equations to model wave propaga-
tion in intermediate depth water and the SWE to model wave run-up and
overtopping, i.e.,

Boussinesq where h/L > 0.05

Numerical model = { SWE elsewhere . (1)
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2.1. The Shallow Water Equations

The SWE are a depth-averaged form of the Navier-Stokes equations that
can model breaking waves as a discontinuity in height. The SWE written
in vector form are:

d 0 a

— —F —_— =Q 2
BtU + o (U) + ByG(U) (2)
where U is the vector of conserved variables, F(U) and G(U) are flux vector
functions and € is the vector of source terms that are used to model bed
topography, friction and bed shear stresses. Here the terms that only model

bed topography are used. The conserved, flux and source term vectors are

¢ Pu
U= ¢’LL ) F(U) = ¢u2 + %¢2 ) (3)
dv duv
ou 0
G(U) = duv , Q=|g0% |. (4)
v? + 347 995t

where ¢ = gh is the geopotential, g = 9.81ms ™2 is the acceleration due to
gravity, h is the local water depth, u© and v are depth-averaged horizon-
tal velocities in the z and y directions respectively and H is the distance
between the bed surface and a fixed arbitrary datum measured downwards.

2.2. Shallow water equations solver — AMAZON

The SWE given in Egs. (2)—(4) are solved using a high-resolution finite vol-
ume method that is second-order in time and space. The MUSCL-Hancock
scheme is a Godunov-type method that uses a monotonic reconstruction
of the conserved variables to obtain values at cell interfaces that prevent
spurious oscillations in the solution. Solutions to local Riemann problems
that are required for the corrector stage are calculated using the HLL ap-
proximate Riemann solver (Harten et al. 1983). A full description of the
SWE numerical scheme including applications to well known test cases can
be found in Mingham and Causon (1998) .

Previous versions of the AMAZON solver used an operator splitting
technique for the treatment of the source terms. The MUSCL-Hancock
scheme described above was used to solve the advection terms on the left-
hand side of Eq. (2) whilst a first-order implicit Euler method was used
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for the source terms. Zhou et al. (2001) developed a surface gradient
method (SGM) for the treatment of bed source terms in the SWE that uses
the water surface elevation instead of the geopotential as the basis for the
linear reconstruction in the mass transport equation. This approach insures
that any differences in the solution to the geopotential and the bed source
terms do not have an adverse affect on the solution. The implementation
of the SGM for the MUSCL-Hancock requires very little alteration to the
existing scheme and the additional computational cost is negligible. A full
description of the SGM and proof of its conservative properties can be found
in Zhou et al. (2001) .

2.3. Nwogu’s Boussinesq Equations

Nwogu (1993) derived a new form of Boussinesq equation that uses the
horizontal velocity at an arbitrary depth as the dependent variable. This
derivation leads to a system of equations that, by altering a free parameter
«, can change the dispersive properties of the system. Nwogu’s Boussinesq
equations are given as:

M+ V- [(h+ nua]+
2 2
v (5 -5 9w+ (2 5 AV G| =0 )
Uyt + gVn + (ua : v)ua + 2o {%@.V(V ' uat) + V[v ' (huat)]} =0 (6)

where 77 is the water surface elevation above the still water level (SWL),
Uy = (Ua,Vqe) is the horizontal velocity at an arbitrary depth z,, h is the
distance between the SWL and the bed surface, V = (8/8z,9/0y) is the
horizontal gradient operator and g = 9.81ms™2 is the acceleration due to
gravity.

The value of the free parameter o gives the depth z, at which the
horizontal velocities are calculated (using the SWL as the basis for the
coordinate system), and also determines the dispersive properties of the
system. The free parameter can take a value in the range ~1/2 < a < 0
where o = —1/2 corresponds to the velocities at the bed surface and o =0
corresponds to velocities at the free surface (a value of o = —1/3 gives the
standard form of the Boussinesq equations derived by Peregrine, 1967 ).
Nwogu (1993) obtained a value of & = —0.390 {corresponding to a depth of
2q = —0.531h) by minimising the error between the dispersion properties
of the linearised system and linear dispersion theory.
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2.4. Boussinesq Equations Solver

Nwogu’s Boussinesq equations are solved using a fourth-order accurate
finite-difference method described by Wei and Kirby (1995) . Integration
through time is achieved by a third-order Adams-Bashforth predictor and
fourth-order Adams-Moulton corrector method. All first-order derivatives
are discretised using a fourth-order stencil insuring that the order of the
truncation error in the numerical scheme is less than that of the order of the
error in the derivation of the governing equations. The momentum equation
is written so that all terms including time derivatives are collected together
resulting in a tri-diagonal system that requires solving at each time step.

2.5. Wave Generation

Wave generation within the Boussinesq domain is achieved by use of an
internal source function method. Larsen and Dancy (1983) first used the
method where mass is added to the continuity equation at single point in
the solution domain. The method works well when a staggered mesh is
used, but applying this method to a scheme that uses a collocated mesh
causes the scheme to become unstable. To overcome this, Wei et al. (1999)
used a Gaussian shape function to add the mass over a range of mesh points
so that the scheme remains stable.
Mass is added to Eq. (5) in the form of a source function defined by

fz,t) = g(x)s(t) (7)
where s(t) is the input time series and g(z) is the Gaussian shape function
given as

g(z) = exp [-f(z — ,)?] (8)
where z, is the centre of the source function and ( is a parameter that
determines the width of the source function. It is beneficial to use a narrow
source function when generating waves within the Boussinesq domain as
addition nodes are required for the source function. Here the authors have
chosen a source function width that is half the wavelength of a typical
wave, L, determined by the peak wave period. This leads to the following
definition of 8

B=—5. ©)
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The amplitude of the Gaussian shape function is given as

F 2a(w? — a1 gkh®)
wkI[1 — a(kh)?]

where a is the amplitude of the input signal, w is the peak frequency,

a; = a+ 1/3, k is the wavenumber, h is the water depth and I is given by

(10)

T —k?

1= /5 (GF)- (D

2.6. Boundary Conditions

There are three types of boundary condition used in the hybrid numeri-
cal model: absorbing boundary for the Boussinesq domain, incident wave
boundary condition for the SWE domain and transient boundary condition
for the SWE domain. A sponge layer analogy is used to provide absorbing
boundaries for the Boussinesq domain. The boundary conditions for the
SWE domain are described in Shiach et al. (2004) .

3. Results

The numerical model described in Section 2 has been used to model physical
experiments carried out at Edinburgh University’s wave flume facility. The
experiments were carried out as part of the EPSRC funded VOWS project
whose aim was the study of violent wave overtopping (Allsop et al. 2005) .
The experiment consisted of an 11,21 metre wave flume with a still water
level (SWL) of 0.7 metres (Fig. 2). The bathymetry for the experiment
modelled here consists of a 1:10 sloping beach on which a near vertical 10:1
battered wall is located so that the water height at the toe of the wall is 0.09
metres. The crest freeboard is 0.15 metres. Gauges are placed at 1.0, 2.0,
3.0, 4.25, 5.5, 6.75, 8.0 and 11.21 metres from the battered wall recording
water depth, an overtopping detector is placed on top of the wall to record
overtopping events and a tank connected to a load cell is placed behind the
battered wall to calculate discharge volume. An absorbing flap-type wave
generator is used to generate waves from the JONSWAP spectrum with a
peak enhancement parameter of v = 3.3. As the waves propagate towards
the battered wall, the sloping beach causes them to shoal and break upon
the structure therefore causing violent overtopping to occur.

Comparisons of the water surface elevation for the seven depth gauges
are given in Fig. 3. The water surface height generated by the numerical
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Figure 2. Sketch of the Edinburgh wave flume.

model shows good agreement with the physical water surface for the gauges
close to the wave generator. For the gauges placed 4.25 and 3.0 metres
from the battered wall, the numerical model tends to under-predict the
wave heights. This is probably due to the absence of flow from the SWE
domain into the Boussinesq domain. The depth gauges placed within the
SWE domain give good agreement with the physical experiment.

The significant wave heights (H; = mean of the top 1/3 wave heights)
for the Edinburgh experiments and the numerical model are contained in
Tables 1 and 2 respectively. This data can also be seen in the form of
a scatter plot in Fig. 4 where the experimental values of H; are plotted
against the numerical predictions of H;. The numerical model provides
wave height predictions to within 10% of the experimental wave heights,
although they tend to under-predict them. This is probably due to the fact
that waves are not reflected back into the Boussinesq domain.

Table 1. Significant wave heights (m) for each of the depth
gauges over runs 16 — 21 of the Edinburgh experiments.

Gauge distance from wall in metres
Run 8.0 6.75 5.5 4.25 3.0 2.0 1.0
16 0.069 0.070 0.072 0.072 0066 0.064 0.060
17 0.086 0.086 0.088 0.089 0.082 0.082 0.076
18 0.078 0.078 0.081 0.079 0.072 0.082 0.096
19 0.102 0.102 0.105 0.102 0.094 0.096 0.125
20 0.085 0.084 0.084 0.080 0.080 0.075 0.078
21 0.099 0.088 0.096 0.097 0.095 0.089 0.087

The mean overtopping discharges (¢ = 1/s m) for runs 16 - 21 can be
seen in Table 3. For all of the runs of the experiments compared here,
the numerical model over-predicts the volume of water overtopping the
seawall. In order to compare the overtopping discharges for the different
experimental set-ups, dimensionless parameters for the volume of discharge
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Figure 3. Comparison between the experimental water surface (solid line) and the nu-
merical water surface (dotted line) for the gauges placed (from top to bottom) 8.0, 6.75,

5.5, 4.25, 3.0, 2.0 and 1.0 metres from the seawall.

Table 2.

Significant wave heights (m) for each of the depth
gauges over runs 16 — 21 of the numerical model.

Gauge distance from wall in metres

Run 8.0 6.75 5.5 4.25 3.0 2.0 1.0
16 0.071  0.067 0.063 0.058 0.055 0.056 0.062
17 0.089 0.084 0.079 0073 0.072 0.072 0.077
18 0.076 0.071 0.067 0.063 0.060 0.059 0.086
19 0.097 0.093 0.086 0.081 0.080 0.080 0.108
20 0.092 0.089 0.087 0.075 0.073 0.070 0.065
21 0.110 0105 0.1010 0.089 0.087 0.085 0.076

and freeboard have been calculated (Besley, 1999) . These are compared
with the empirical formula for the dimensionless overtopping discharge for
vertical structures derived by Besley in Fig. 3. Where 0.05 < R, < 0.1
the numerical model provides good agreement with the Besley curve, but
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Figure 4. Significant wave heights: Comparison between the VOWS experiments and
the numerical model.

where the dimensionless freeboard increases to approximately 0.2 there is
a notable different between the discharge values from the numerical model

and both the Besley curve and the experimental values.

Table 3. Mean overtopping volumes

(¢ =1/s m).
Run Experiment Numerical Model
16 0.0056 0.0356
17 0.0275 0.0338
18 0.0213 0.0525
19 0.0481 0.0725
20 0.0119 0.0069
21 0.0219 0.0725

4. Conclusions

A hybrid numerical model based on the shallow water equations and
Nwogu’s extended Boussinesq equations has been presented. A second-
order finite-volume method was used to solve the shallow water equations
incorporating the Surface Gradient Method for the treatment of source
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Figure 5. Dimensionless discharge (Qp) plotted against dimensionless freeboard (Rp)
for the physical model and the numerical model.

terms. The extended Boussinesq equations were solved using a fourth-
order finite-difference method where the truncation error in the numerical
scheme is less than that of the governing equations, thus ensuring that the
dispersive properties of the governing equations are fully retained in the
model. Wave generation was achieved by using an internal source function
method within the Boussinesq domain using wave heights from the physical
experiments.

The numerical model was used to give comparisons of water surface el-
evation and mean overtopping discharge to a series of experiments carried
out to model violent wave overtopping of a near vertical seawall. The nu-
merical model provided good predictions of the water surface elevation for
locations throughout the flume. The significant wave heights were calcu-
lated for comparison and, whiist most values were accurate to within 10%,
there was a general trend for the numerical model to under-predict the
wave heights. The mean overtopping discharge volume was over-predicted
by the numerical model in all 6 runs modelled here. It is suspected that
the under-prediction of the wave heights for the gauges located near the
boundary between the Boussinesq domain and the shallow water domain is
a result of the absence of reflective waves entering the Boussinesq domain.
Further work to rectify this problem is being undertaken.
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