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Abstract

The shallow water equations (SWE) have been used to model a series of experiments examining violent wave overtopping

of a near-vertical sloping structure with impacting wave conditions. A finite volume scheme was used to solve the shallow water

equations. A monotonic reconstruction method was applied to eliminate spurious oscillations and ensure proper treatment of

bed slope terms. Both the numerical results and physical observations of the water surface closely followed the relevant

Rayleigh probability distributions. However, the numerical model overestimated the wave heights and suffered from the lack of

dispersion within the shallow water equations. Comparisons made on dimensionless parameters for the overtopping discharge

and percentage of waves overtopping between the numerical model and the experimental observations indicated that for the

lesser impacting waves, the shallow water equations perform satisfactorily and provide a good alternative to computationally

more expensive methods.
D 2004 Elsevier B.V. All rights reserved.
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1. Introduction people, cars and trains into the sea and represent a
Violent wave overtopping occurs when waves

break against sea walls, throwing water up and over

the top. Of the hundreds of kilometres of coastal

defences in Britain, a significant proportion have

roads, railways and footpaths running alongside. Vi-

olent overtopping events have been known to wash
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threat to human life and property.

Wave overtopping has been studied extensively

over the past 30 years. Goda et al. (1975), Owen

(1982) and Franco et al. (1994) all present data and

guidance on overtopping volumes for a variety of

sloping and vertical structures. Owen and Franco et al.

focus primarily upon cases where waves do not break

(pulsating or nonimpulsive conditions). While Goda’s

data includes violent or impulsive conditions, these

are not treated separately. Besley et al. (1998) and

Pearson et al. (2001) have used observations from

either physical models or field data to gain a greater

understanding of violent, impulsive overtopping.
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Guidance on mean and wave-on-wave overtopping

volumes under violent conditions is now established,

but for simple structures and standard sea spectra only.

Violent overtopping events are difficult to model

using current numerical methods. Ideally, the use of

the well-known Navier–Stokes equations would pro-

vide a good model of the overtopping events. How-

ever, numerical solvers for these equations require

extensive computational resources, and until com-

puters are developed that can allow for a model based

on the Navier–Stokes equations to be practical, an

alternative method is required.

A depth-averaged formulation of the Navier–

Stokes equations exists in the shallow water equations

(SWE). As the SWE are depth averaged, any vertical

velocity is neglected. Thus, these equations, in theory,

may not be suitable as a basis for a numerical model

for violent wave overtopping where vertical velocities

are a major feature. However, SWE models are easy to

implement and computationally efficient. Therefore,

before discarding them altogether, an analysis of the

limitations of the SWE model is required.

Existing models that make use of the SWE to

model wave runup and overtopping include ODI-

FLOCS (van Gent, 1994, 1995) and ANEMONE

(Dodd, 1998). These models have been used to give

predictions of wave runup and overtopping of sea

dikes where wave conditions are less impacting and

violent overtopping is less likely to occur.

This paper examines the validity of a numerical

model based on the SWE to model violent wave

overtopping of sea walls.
Fig. 1. Definition sketch
2. Numerical model

The shallow water equations (SWE) in one dimen-

sion can be expressed as

B

Bt
Uþ B

Bx
FðUÞ ¼ S ð1Þ

where

U ¼
/

/u

0
@

1
A; FðUÞ ¼

/u

/u2 þ 1
2
/2

0
@

1
A;

¼
0

g/ BH=Bx

0
@

1
A;

ð2Þ
and / = gh is the geopotential; h is the water depth;

g = 9.81 m s� 2 is the acceleration due to gravity; u is

the depth average velocity in the x-direction, and H is

the distance between a fixed reference level and the

bed surface elevation (see Fig. 1). In this form, U

represents the vector of conserved variables, F(U) the

flux vector function, and S is the vector of source

terms.

The SWE are a hyperbolic system of partial dif-

ferential equations that can admit discontinuities into

the solution. These can be difficult to model as

spurious oscillations created by the numerical scheme

around the area of the discontinuity tend to contam-

inate the solution and eventually render any results

worthless. Therefore, for a scheme to be considered

applicable when solving the SWE, it must be able to

satisfactorily deal with discontinuous behaviour. The
for bed topography.
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MUSCL–Hancock finite volume scheme (van Leer,

1985) has been chosen by the authors as it has been

extensively tested over a range of demanding test

cases (Mingham and Causon, 1998; Hu et al. 2000)

and performed admirably in all. The scheme is a high-

resolution Godunov-type scheme incorporating the

HLL Riemann solver (Harten et al. 1983) to provide

solutions to the local Riemann problems at the cell

interfaces.

2.1. The MUSCL–Hancock scheme

The MUSCL–Hancock scheme is a two-stage

predictor–corrector method. The predictor stage is

given as

U
nþ1=2
ij ¼ Un

ij �
Dt

2A

XM
m¼1

FðUmÞ � Lm � ASn
ij

 !
; ð3Þ

where n is the time step counter; ij is the cell index; Dt

is the step; A is the cell area; Lm is the cell side vector

defined as the cell side multiplied by the outward

pointing unit normal vector; M is the number of sides

of the cell ij. The fluxes at the cell interfaces m

(F(Um)) are calculated using slope limited gradients

based upon neighbouring cell data (Section 2.1.1).

The corrector stage provides a fully conservative

solution over one time step and is given as
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where the flux vector F(Um
L,Um

R) are the solutions to

the local Riemann problems at each time step calcu-

lated using the HLL approximate Riemann solver (see

Section 2.1.2). Um
L and Um

R are the conserved variables

at the left and right side of each cell interface,

respectively.

A full description and extensive validation of the

MUSCL–Hancock scheme can be found in Mingham

and Causon (1998).

2.1.1. MUSCL reconstruction

MUSCL (Monotonic Upwind Schemes for Con-

servation Laws) schemes use the values of the con-
served variables at the cells immediately adjacent to

the cell i to calculate a slope-limited gradient which

ensures that there is no over/undershoots at the cell

interfaces, (iF 1/2) (Toro, 1997). Here, the authors

have used the well-known van Leer slope limiter

function which is given in Hirsch (1998).

The values of the conserved variables / and /u
can be found at the cell interfaces by using linear

interpolation. For example, the values of the geo-

potential at the left- and right-hand side of the cell

interface (i� 1/2) are

/L
i�1=2 ¼ /i�1 þ

1

2
Dxi�1d/i�1;

/R
i�1=2 ¼ /i �

1

2
Dxid/i; ð5Þ

where d/i are the slope limited gradients of /i and

Dxi ¼ xiþ1=2 � xi�1=2: ð6Þ

2.1.2. HLL approximate Riemann solver

The corrector stage of the Hancock scheme

requires the solution to a local Riemann problem at

every cell interface. The Riemann solver used here

was developed by Harten et al. (1983) (HLL) and has

shown to be accurate and robust in practice (Mingham

and Causon, 1998) and considerably less computa-

tionally expensive than an exact Riemann solver. The

wave speed calculations used here can be found in

Davis (1988) for a wet bed and Fraccarollo and Toro

(1995) for a dry bed.

2.1.3. Time step calculation

To ensure that the time marching scheme remains

stable, a maximum allowable time step calculation

based upon the stability condition developed by

Courant, Friedrichs and Lewy (CFL) is applied (Mor-

ton and Mayers, 1994). The time step Dt is given by

Dt ¼ m min
i

Dxi

AuiAþ
ffiffiffiffiffi
/i

p
 !

; ð7Þ

where m is the Courant number (0 < mV 1). For all

numerical solutions presented here, a Courant number
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of m = 0.65 was used throughout to ensure scheme

stability.

2.2. The surface gradient method

The numerical scheme presented in Section 2.1

solves the homogeneous form of the SWE where

applications are mainly limited to flat-bed shock and

bore wave propagation problems. However, the inclu-

sion of the source terms that model bed topography

ensure more realistic formulations applicable to prob-

lems such as wave runup and overtopping on a

sloping beach and tidal flows in coastal water regions.

It has been found that for a conservative scheme a

naı̈ve numerical treatment of source terms may lead to

nonphysical behaviour of the fluid (Leveque, 1998).

The numerical treatment of source terms has re-

ceived particular attention in the last few years with a

variety of different methods proposed. Garcia-Navarro

and Vázquez-Cendón (2000) proposed an upwind

scheme which uses an extension of the formulation

of Roe’s scheme. Another approach was proposed by

Hu et al. (2000), in which the authors used the

MUSCL–Hancock scheme to solve the inviscid

SWE along with an ODE solver (Euler) for the

treatment of the source terms. Both of the methods

described above performed well on standard test

cases. However, they did suffer from being overly

complicated. Zhou et al. (2001) developed a Surface

Gradient Method (SGM) to deal with the treatment of

the source terms that requires very few alterations to

the MUSCL–Hancock scheme. The SGM was shown

to give excellent agreement with known solutions to

standard test cases chosen to examine the scheme’s

ability to model both transcritical flow and steady-

state problems.

Traditional MUSCL schemes use the conserved

variables / and /u to approximate the fluxes at the

cell interfaces such as

/iF1=2 ¼ /iF
1

2
Dxid/i;

ð/uÞiF1=2 ¼ ð/uÞiF
1

2
Dxidð/uÞi; ð8Þ

where iF 1/2 are the cell interfaces; Dx is the cell

width and d/i and d(/u)i are the slope-limited gra-

dients across cell i. The SGM approach uses the water
surface elevation as the basis for the MUSCL recon-

struction instead of the geopotential. The water sur-

face elevation, gi, is defined by

gi ¼ hi þ zbi; ð9Þ

where hi and zbi are the water height and bed surface

elevation, respectively (Fig. 1). The reconstruction

process is then applied by using

/iF1=2 ¼ gðgiF
1

2
Dxidgi � zbiF1=2Þ ð10Þ

This approach ensures that any errors that are

caused by the difference between the gradient of the

water height, h(x,t), and the gradient of the bed slope,

zb(x), do not affect the solution. The SGM is fully

conservative so long as a centred discretisation of the

source terms is used. When using the SGM, the bed

surface elevation, zbi is calculated by averaging the

bed elevation at the cell interfaces.

A full description of the SGM together with a

formal proof of the conservative properties and vali-

dation can be found in Zhou et al. (2001).
3. Violent wave overtopping

The more violent impact of water waves on sea

walls cause velocities and pressures much larger then

those associated with the wave’s propagation under

gravity (Peregrine, 2002), and it is under these con-

ditions that violent wave overtopping can occur. A

study into violent wave overtopping was the focus of

the VOWS (Violent Overtopping by Waves at Sea

walls) project funded by the EPSRC (Engineering and

Physical Sciences Research Council). As part of the

VOWS project, physical model tests of violent wave

overtopping were carried out in a wave channel at the

University of Edinburgh.

Allsop et al. (1995) developed a parameter (h*)

that measures the type of wave interaction (and

therefore, the type of overtopping) with vertical walls.

The h* parameter is given as

h* ¼ h

Hs

2ph
gT2

m


 �
; ð11Þ

where h is the wave height at the toe of the

structure; Hs =H1/3 (the mean of the top one-third
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wave heights) is the significant wave height, g = 9.81

m s� 2 is the acceleration due to gravity and Tm is

the mean wave period. When h*>0.3, the waves

reflect from the vertical structure, and any over-

topping is likely to be gentle ‘green water’ over-

topping. When h*V 0.3, impacting waves begin to

prevail and ultimately dominate, resulting in violent

wave overtopping.

3.1. The Edinburgh wave flume experiments

The wave flume that was used to carry out the

physical modelling is approximately 20 m in length

by 0.4 m wide with an absorbing flap-type wave

generator located at one end (Fig. 2). The operating

water depth is 0.7 m (intermediate depth at the wave

generator). The basic bathymetry of the wave flume

consists of a 1:10 sloping beach on which is placed a

10:1 battered wall. The battered wall is placed so

that the water depth at the toe of the structure, h, is

0.09 m. Eight wave gauges that record water surface

elevation are placed at 1.0, 2.0, 3.0, 4.25, 5.5, 6.75,

8.0 and 11.21 m away from the battered wall and

record water depth at a rate of 100 Hz (Fig. 3). The

wave generator produced 1024-second sequences of

waves from the JONSWAP spectrum with c = 3.3,
representing sequences consisting of f 1000 waves.

In all, 15 runs of the experiment were carried out

using this configuration that produced h* values

ranging from 0.03 to 0.1.

Table 1 contains the significant wave height (Hs)

measured at the toe of the battered wall, the mean

wave period (Tm), the h* parameter and the dimen-

sionless freeboard Rh (see Section 3.4) for the 15 runs

of the experiment.
Fig. 2. Edinburgh wave fl
3.2. Numerical model of the Edinburgh wave flume

experiments

For the numerical modelling of the Edinburgh

wave flume experiments, a reduced solution domain

starting at 2.0 m away from the battered wall was

used to minimise the energy loss that may occur as

the waves propagate up the flume. The total length of

the numerical flume was 2.1 m which was discretised

into 100 computational cells (Dx = 0.021 m). The

water surface elevation recorded at the gauge placed

2.0 m away from the battered wall serves as the

boundary condition for the water depth at the left-

hand boundary, whilst the velocity was assumed to be

the same as that of the first computational cell in from

the left-hand boundary. This boundary condition

takes into account both incident waves and reflecting

waves from the structure. A study carried out by

Richardson et al. (2001) showed that this boundary

condition provides values of the water surface and

velocity that are 99% and 85% accurate, respectively,

when compared to a moving boundary model. A

transmissive boundary condition was used at the

right-hand boundary to allow water to pass out of

the solution domain.

Data were collected from two points within the

solution domain. At x = 1.0 m, the water surface eleva-

tion was recorded which corresponds with the gauge

placed 1.0 m from the battered wall. At x = 2.03 m, the

overtopping discharge, q, was calculated from the

water depth and positive velocity by using the equation

q ¼ huDt: ð12Þ
An overtopping event is considered to have oc-

curred if a positive water depth is recored at the gauge

ineering 51 (2004) 1–15 5
ume: side elevation.



Fig. 3. Edinburgh wave flume: experimental setup.
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placed at the top of the battered wall and the velocity

recorded at the same gauge is landward.

3.3. Results

A plot of the numerical and experimental water

surface at the gauge placed 1.0 m away from the

battered wall over two separate time intervals can be

seen in Fig. 4. A comparison between the water

surface elevation for the physical model and the

numerical model suggests that the numerical surface

over-predicts the wave heights at the gauge placed 1.0

m away from the battered wall. The crests of the

numerical waves occur at the same time as the

physical waves. The lack of dispersion within the

SWE is responsible for this shortfall in the numerical
Table 1

Edinburgh wave flume experiment parameters

Run Hs
y Tm

y h* Rh

1 0.063 1.23 0.0544 0.1296

2 0.074 1.27 0.0435 0.0881

3 0.069 1.25 0.0481 0.1046

4 0.059 1.25 0.0563 0.1431

5 0.062 1.25 0.0536 0.1296

6 0.071 1.50 0.0325 0.0686

7 0.078 1.48 0.0304 0.0584

8 0.063 1.52 0.0356 0.0849

9 0.050 1.52 0.0449 0.1347

10 0.075 1.50 0.0307 0.0615

11 0.062 0.97 0.0889 0.2152

12 0.059 0.95 0.0974 0.2477

13 0.066 0.98 0.0818 0.1860

14 0.068 1.00 0.0763 0.1683

15 0.064 0.98 0.0844 0.1978

y Measured at the toe of the battered wall.
model as the energy loss observed in the physical

model is not replicated.

Plots showing the overtopping discharge, q, over

time 0–1200 s for all 15 runs of the numerical

model and the physical model can be seen in Figs.

5 and 6. An overtopping event can be identified in

Figs. 5 and 6 to be a steep upward turn in the

discharge plot. Runs 3, 13 and 14, in particular,

show excellent agreement between the numerical and

physical discharge. However, runs 7, 9 and 10 show

that the agreement is poor for these cases. A quan-

titative analysis of the discharges has been performed

in Section 3.4.

3.4. Wave and overtopping statistics

In order to compare the numerical model of the

wave flume and the physical experiment, a number

of statistics have been calculated that analyse the

water surface elevations and the overtopping dis-

charges. To compare the water surface elevations

recorded by the depth gauges placed 1.0 m away

from the battered wall, the probability density func-

tions (PDFs) for numerical and physical models have

been calculated and compared with the Rayleigh

distributions. Analysis of the overtopping discharges

has been achieved by calculating values of dimen-

sionless parameters and comparing results against

empirical formulae.

3.4.1. Rayleigh wave height distribution

Longuet-Higgins (1952) showed that based upon

the linear model of waves with a narrow energy

spectrum, wave heights in deep water should follow

the Rayleigh distribution (Battjes and Groenendijk,



Fig. 4. Numerical simulation of the Edinburgh wave flume experiments: comparison of the experimental (solid line) and the numerical (dotted

line) water surface at gauge placed 1.0 m from the battered wall over time intervals of t=[10,30] (a) and t=[100,120] (b).
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Fig. 5. Comparison of the numerical discharge (dotted line) against the experimental discharge (solid line) for runs 1–8.
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Fig. 6. Comparison of the numerical discharge (dotted line) against the experimental discharge (solid line) for runs 9–15.
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Fig. 7. Comparison of the experimental (left) and numerical (right) PDFs against their corresponding Rayleigh distributions (dashed line) for

runs 4, 6 and 9.
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2000). The probability that waves have a height less

than H is then

PðH < HÞ ¼ 1� exp � H

Hrms


 �2
" #

; ð13Þ

where H is a random variable; Hrms =H1/3/1.416 is the

root mean square (rms) of the wave heights, and H1/3

is the mean of the top 1/3 wave heights.

The observed probability distribution for the wave

heights is given as

PðH < HÞ ¼ 1� i

N � 1
; ð14Þ

where i is the ith largest recorded wave height and N

is the number of waves recorded. Plots of the ob-

served and Rayleigh probability functions for runs 4,

6 and 9 are compared in Fig. 7.

The observed probability functions for both the

physical experiment and the numerical model closely

follow the Rayleigh distribution when the observed

wave heights are greater than the median value. For

smaller wave heights, there is a degree of scatter away

from the Rayleigh probability distribution. However,

as noted earlier (Fig. 4), the numerical model produ-

ces greater wave heights.

3.4.2. Overtopping statistics

In order to compare overtopping discharges be-

tween different experimental set-ups, dimensionless
Table 2

Overtopping statistics

Run h* Physical model

Q Qh Now Nw Now

(%)

1 0.063 1.26E� 05 0.0502 175 863 20

2 0.074 3.25E� 05 0.2033 479 888 54

3 0.069 2.38E� 05 0.1216 299 900 33

4 0.059 2.68E� 06 0.0100 39 850 5

5 0.062 8.45E� 06 0.0349 132 898 15

6 0.071 2.26E� 05 0.2531 329 719 46

7 0.078 3.88E� 05 0.4971 535 712 75

8 0.063 1.19E� 05 0.1104 173 682 25

9 0.050 3.61E� 06 0.0212 76 658 12

10 0.075 2.74E� 05 0.3431 410 719 57

11 0.062 1.37E� 05 0.0205 204 1000 20

12 0.059 7.94E� 06 0.0099 125 1017 12

13 0.066 2.35E� 05 0.0415 394 985 30

14 0.068 2.84E� 05 0.0576 357 1000 36

15 0.064 1.89E� 05 0.0313 278 985 28
parameters for the volume of discharge and freeboard

have been calculated. For h* values of less than 0.3,

these are given as (Besley, 1999)

Qh ¼
Qffiffiffiffiffiffiffiffiffi
gH3

s

p
 !

=h*2; ð15Þ

and

Rh ¼
Rc

Hs


 �
h*; ð16Þ

where Hs is the significant wave height at the toe of

the battered wall, Qh is the dimensionless discharge

and Rh is the dimensionless freeboard; Q is the mean

overtopping discharge rate per metre of sea wall ( q/t

where t denotes the total amount of time the experi-

ments was run for, in this case t= 1200 s), and Rc is

the crest freeboard (Fig. 2). Besley et al. (1998)

performed an extensive range of measurements for

mean overtopping discharge on vertical walls, and the

line of best fit using these measurements can be

described by the following equation

Qh ¼ 0:000137R�3:24
h : ð17Þ

Besley also developed an equation describing the

proportion of waves that overtop a vertical wall given
Numerical model

/Nw Q Qh Now Nw Now/Nw

(%)

1.09E� 05 0.0436 84 1037 8

5.02E� 05 0.3142 290 967 30

2.70E� 05 0.1379 196 1017 19

1.24E� 06 0.0046 13 1038 1

6.19E� 06 0.0255 44 1042 4

2.40E� 05 0.2693 203 854 24

8.83E� 05 1.1317 541 847 64

9.49E� 06 0.0883 61 861 7

2.17E� 06 0.0127 14 849 2

4.87E� 05 0.6088 292 864 34

1.11E� 05 0.0167 89 1252 7

6.91E� 06 0.0086 47 1239 4

2.61E� 05 0.0460 150 1233 12

2.63E� 05 0.0534 214 1225 17

1.63E� 05 0.0270 121 1239 10



Fig. 8. Dimensionless discharge (Qh) plotted against dimensionless freeboard (Rh) for the physical model and the numerical model.
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the dimensionless freeboard parameter. For h*V 0.3,

this is

Now=Nw ¼ 0:031R�0:99
h ; ð18Þ

where Now is the number of overtopping waves, and

Nw is the number of waves in the sequence.
Fig. 9. Percentage of waves overto
Table 2 contains the overtopping statistics calcu-

lated for both the physical and numerical models. The

dimensionless discharges are plotted against the di-

mensionless freeboards in Fig. 8 which also shows

Besley’s relationship. The percentages of waves over-

topping in the numerical and physical models are

shown in Fig. 9, along with the empirical Besley

curve.
pping the 10:1 battered wall.
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For dimensionless freeboard values of 0.16 and

greater, there is excellent agreement both between the

numerical and experimental dimensionless discharges

and with the Besley curve (Fig. 8). At the lower

values of Rh (RhV 0.1), there is not so good agree-

ment between the two data sets and the Besley curve.

However, the general trend is still maintained. For Rh

between 0.12 and 0.15, there is a marked decrease in

the accuracy of the Besley curve when compared to

the calculated dimensionless discharges.

The percentage of waves overtopping in the nu-

merical model is significantly less than was recorded

from the physical model (Fig. 9). This is due to the

fact that breaking waves are represented by bore

waves in the depth averaged SWE. The physical

processes that occur to create violent overtopping

events cannot be modelled properly in this manner,

hence, the wave-by-wave overtopping predictions.

However, as a comparison of the discharge volume

shows, the SWE give good predictions of mean

overtopping discharge. In keeping with the findings

from Fig. 8, where the Rh values are greater than 0.16,

the numerical model shows slightly better agreement

with the Besley curve than at lower values of Rh

where the data points are more scattered.

The absolute percentage difference between the

numerical and the physical models has been calculat-
Fig. 10. Percentage error between the physical model and the numeric

dimensionless discharge (Qh).
ed for both the dimensionless discharge and the

significant wave height 1.0 m from the battered wall

(Fig. 10). Fig. 10 shows that there are two distinct

populations of data points, the runs where the h*

values are 0.075–0.1 and the runs where the h* values

are less than 0.06. For runs where the h* parameter is

0.075–0.1 (runs 11–15), the percentage errors for

both the dimensionless discharge (Qh) and the signif-

icant wave heights (Hs) are less than 20%. For the

runs where the h* parameter is less than 0.06 (runs 1–

10), the absolute percentage error for the significant

wave height is typically 35–40%, and the percentage

error for the dimensionless discharge is also spread

around the 35–40% area, with two outliers that have a

percentage error of 79% and 127% where the value of

h* is the lowest of all of the runs at 0.03.
4. Conclusions

AMAZON, a numerical model based upon the

shallow water equations was described. The numerical

scheme used is the MUSCL–Hancock scheme which

is a high-resolution Godunov-type scheme that uses

MUSCL reconstruction to prevent spurious oscilla-

tions. The surface gradient method, a modern method

for dealing with the treatment of source terms within
al model for the observed significant wave height (Hs) and the
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the shallow water equations, was discussed and imple-

mented. The numerical model was used to simulate a

physical experiment carried out in a wave flume as

part of the VOWS project.

Comparisons between water surface elevations of

the physical and numerical models show that although

the waves occur at the same time, the numerical

surface over-predicts the heights of each wave. This

can be attributed to the lack of dispersion within the

shallow water equations that are being used in non-

shallow water. The probability density functions for

non-exceedence were calculated for both the physical

and numerical models and compared against the

expected Rayleigh distributions. Both models showed

good agreement with the expected Rayleigh distribu-

tions, but again showed that the numerical model

over-predicts the wave heights.

Dimensionless statistics were calculated to com-

pare overtopping discharges. These were then com-

pared to empirical formulae that showed that for

higher h* values, there was better agreement between

the numerical model, the physical model and the

empirical formulae. An analysis of the percentage of

overtopping waves showed that the numerical model

significantly underestimated the number of overtop-

ping events in the sequence, but it was noted that for

higher values of Rh (and therefore, h*) the numerical

model provided a better fit to the empirical formulae

than for lower values of h*. Finally, a comparison was

made between the absolute percentage error between

the numerical and physical model that showed that for

h* values 0.075–0.1, the shallow water equations

produce results to within 20% of the physical model

for both the significant wave height and the dimen-

sionless discharge. For values of h* below 0.06, the

analysis showed that the percentage errors ranged

from a typical 40% to a couple of outliers at 79%

and 127% for small values of h* where waves are

mostly impacting.

It is concluded that the shallow water equations

provide a useful alternative to more computationally

expensive models for violent wave overtopping pro-

vided the h* parameter does not fall below 0.075 and

that the seaward boundary condition is sufficiently

close to the structure. This model provides a useful

engineering design tool with 1000 wave simulations

taking less than two minutes to run on a moderately

fast PC. Further work to extend the model to include
dispersive terms, helping to eliminate differences

between the physical and numerical wave heights,

will allow the seaward boundary to be located further

offshore.
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