
Computational Mathematics

Computer Graphics Lecture Notes

Dr Jon Shiach & Dr Killian O’Brien

Spring 2022

projection plane
xz

y

© Department of Computing and Mathematics

Contents

0 Preliminaries 1
0.1 Learning and Teaching . 1
0.2 Assessment . 2
0.3 Advice to students . 3

1 Vector Geometry 5
1.1 Co-ordinate systems . 5
1.2 Vectors . 5
1.3 Points, lines and planes . 13
1.4 Distance calculations . 17
1.5 Lab exercises . 20

2 Translation, Rotation and Scaling Transformations 21
2.1 Linear Transformations . 21
2.2 Translation . 26
2.3 Scaling . 28
2.4 Rotation . 31
2.5 Lab exercises . 38

3 Virtual Environments 39
3.1 The viewing pipeline . 39
3.2 Defining objects . 40
3.3 Building a virtual environment . 44
3.4 Transforming to the camera space . 47
3.5 Projecting onto the screen space . 50
3.6 Lab exercises . 58

4 Clipping and Hidden Surface Removal 59
4.1 Clipping . 59
4.2 Hidden surface removal . 63
4.3 Painter’s algorithm . 66
4.4 Binary space partitioning . 67
4.5 Lab exercises . 76

A Solutions to Lab Exercises 79
A.1 Vector geometry . 79
A.2 Translation, Rotation and Scaling Transformations . 81
A.3 Virtual Environments . 84

Index 87

This version compiled on April 25, 2022.

i

Chapter 0

Preliminaries

0.1 Learning and Teaching

0.1.1 Lecture notes

These are the lecture notes that accompany the computer graphics part of the unit Computational Mathe-
matics with the other part covering computing mathematics. Students are provided with a printed copy of
the lecture notes so that they can focus on what is being covered in the lecture without having to worrying
about making their own notes. There is also an electronic copy in PDF format which is available on the
moodle area for this unit. These notes are quite comprehensive and are written specifically for this unit
so should serve as your main point of reference. However, it is always advisable to seek out other sources
of information either on the internet or better still textbooks from the library. Mathematical notation can
differ between authors and these notes have been written to use notation that is most commonly found
online.

These notes use a tried and tested format of definition (what is it that we are studying?) → explanation
(why do we use it?) → examples (how is it used?) → exercises (now you try it). The examples in the
printed version of the notes are left empty for students to complete in class. This is done because by
writing out the steps used in a method it helps students to better understand that method. The PDF
version of the notes contains the full solutions to the examples so if you do happen to miss an example
you can complete the example by looking it up in the PDF version.

You should read through the lecture notes prior to attending the lectures that focus on that particular
chapter. Don’t worry about trying to understand everything when you first read through them. Reading
mathematics is not like reading your favourite novel, it often requires repeated reading of a passage before
you fully grasp the concepts that are being explained. In the lectures we will explain the various topics and
provide more insight than what is written in the notes.

The PDF version of the notes contains lots of hyperlinks for easy navigation around the document. Hy-
perlinks show up as blue text and can save lots of time scrolling up and down the pages.

0.1.2 Unit timetable

The timetable for the computing mathematics part of the unit is shown below (this can also be accessed
via MyMMU). The material will be covered in one 2-hour lecture and one 2-hour lab.

• Lecture: Mondays 12:00 - 14:00 in JD E249

• Lab: Mondays 15:00 - 17:00 in JD C2.04

Students are expected to devote at least 30 hours per week to their studies and should complete all reading
and tutorial exercises during this time.

1

https://my.mmu.ac.uk

Chapter 0. Preliminaries Back to Table of Contents

Note that due to the 2nd May being a bank holiday monday, the lecture and lab will be moved to the
following times on Wednesday 4th May:

• Lecture: 09:00 – 11:00 in E145

• Lab: 11:00 – 13:00 in C3.03

0.1.3 Teaching Schedule
The computing mathematics material will be covered over the 6 weeks of the teaching block as outlined
in table 1 so you should be aware of what is being covered and when. There may be times when we have
to deviate from this slightly and you will be informed of this in the lecture.

Table 1: Computer graphics teaching schedule

Week Date (w/c) Material
1 14/03/2022 Chapter 1 Vector Geometry: co-ordinate systems; vectors; equations of points,

line and planes; distance calculations.
2 21/03/2022 Chapter 2 Translation, Rotation and Scaling Transformations: linear transforma-

tions; translation, scaling and rotation transformations; transformation matrices.
Coursework assignment handed out

3 28/03/2022 Chapter 3 Virtual Environments: the viewing pipeline; defining objects; building
the world space; aligning to the camera space; 3D to 2D projections; projecting
onto the screen space.

4 04/04/2022 Chapter 4 Clipping: Sutherland-Hodgman algorithm; intersection between lines
and planes.

Easter Break
5 25/04/2021 Chapter 4 Hidden Surface Removal: back face culling; painters algorithm; binary

space partitioning.
6 02/05/2021 Revision.

Coursework assignment deadline – 6th May 2022
7 02/05/2022 Assessment week

Examination – 9th May to 10th May 2022

0.2 Assessment
The assessment for this unit takes the form of two coursework assignments and a take home examination.

• Coursework (20%) – Computing Mathematics

– Released to students on Monday 21st March 2022;

– Deadline is 9pm Friday 6th April 2022;

• Coursework (20%) – Computer Graphics

– Released to students on Monday 21st March 2022;

– Deadline is 9pm Friday 6th May 2022;

• Examination (60%)

– Released to students at 09:00 on Tuesday 10th May 2022;

– Deadline is 12:30 on 9pm Friday 6th May 2022;

Dr Jon Shiach & Dr Killian O’Brien 2 Computer Graphics Lecture Notes

Back to Table of Contents Chapter 0. Preliminaries

– Students will have access to the lecture notes, unit materials on moodle and any other sources
of information available;

– Total of 4 questions, 2 questions on computer graphics and 2 questions on computing mathe-
matics.

You will receive a percentage mark for each assessment component and your overall mark for the unit will
be calculated using the simple equation

unit mark = 0.2× coursework 1 mark + 0.2× coursework 2 mark + 0.6× examination mark.

To successfully pass the unit you will need a unit mark of at least 40%.

0.3 Advice to students
Some general advice to students:

• Attend all of the classes – the key to successfully passing the unit is to attend all of your classes.
Mathematics is not a subject that can be learned easily in isolation just by reading the lecture notes.
You will get much more out of the unit by attending, and more importantly, actively engaging in the
classes.

• Complete all of the exercises – you would not expect an athlete to get faster or stronger without
exercising and the same applies to studying mathematics. The tutorial exercises are designed to give
you practice at using the various techniques and to help you to fully grasp the content. Try to make
sure that you complete all of the exercises before the following week’s lectures. Full worked solutions
are provided in ?? at the end of these notes but do try to be disciplined and avoid looking up the
answers before you have attempted the questions.

• Catch up on missed work – for whatever reason there may be a day when you cannot attend your
classes, if this happens make sure you make the effort to catch up on missed work. Read through
the appropriate chapter in the notes (as specified in the teaching schedule), complete the examples
and attempt the tutorial exercises. It is very easy to start falling behind and the longer you leave it
the more difficult it will be to catch up.

• Start the coursework as soon as you are able – the coursework is released to students early in
the teaching block so you are not expected to be able to answer all of the questions right away. As
we progress through the unit you will be told which questions you should now be able to answer. Try
to start these questions as soon as you can and not leave it to the last minute.

• Ask questions! – perhaps the most important piece of advice here, there will be times when you
are not quite sure about a concept, application or question. You can ask for help from the teaching
staff and your fellow students. Mathematics is a hierarchical subject which means it requires full
understanding at a fundamental level before moving onto more advanced topics, so if there are any
gaps in your knowledge don’t be afraid to ask questions.

Dr Jon Shiach & Dr Killian O’Brien 3 Computer Graphics Lecture Notes

Chapter 1

Vector Geometry

1.1 Co-ordinate systems
A co-ordinate system is a system that uses a sequence of numbers to determine the position of an object
in Euclidean space. The numbers are known as co-ordinates and are usually represented in an ordered set
of numbers enclosed in parenthesis known as a tuple. The most common example of a co-ordinate system
is the Cartesian co-ordinate system (named after René Descartes) which uses perpendicular number lines
to define points in the space. Consider fig. 1.1 where three number lines called axes (singular: axis) are
labelled x, y and z. The position of a point in this space is defined by the co-ordinates (x, y, z) where x, y
and z are the distances along the axes from zero. Since these values are real numbers a three-dimensional
space is often denoted by R3.

x

y

z

(x, y, z)

x y

z

Figure 1.1: The three-dimensional Cartesian co-ordinate system.

1.1.1 Homogeneous co-ordinates

Homogeneous co-ordinates are a system of co-ordinates that include an additional value in the tuple.
The use of homogeneous co-ordinates is standard practice in computer graphics since they allow us to apply
operations such as translation, scaling, rotation and projection using matrix multiplication. The Cartesian
co-ordinates (x, y, z) are represented using homogeneous co-ordinates as (wx,wy,wz, w) where w is some
scalar quantity. Note that when w = 1 the homogeneous co-ordinates are (x, y, z, 1).

1.2 Vectors
A vector is an object that has length and direction. In mathematical notation vectors are denoted in print
using a boldface character, e.g., a or as an arrow over a character, e.g., ~a or underlined when handwritten,
e.g., a. A vector is defined by the signed distance along each axis by a tuple. For example, let a be a vector

5

Chapter 1. Vector Geometry Back to Table of Contents

in R3 defined by the tuple a = (ax, ay, az) where ax, ay, az ∈ R, then a can be represented geometrically
as the

x

y
z a

ax ay

az

Figure 1.2: The vector a = (ax, ay, az).

1.2.1 Matrix representation
The tuple representing a vector can be written as either a matrix consisting of a single row or a single
column. So a vector in R3 can be represented as

a = (ax, ay, az) =

ax

ay

az

 .
These representations are called row vector and column vector respectively.

1.2.2 Vector magnitude
The length of a vector a is known as the magnitude and is denoted using |a|.

Definition 1.1: Vector magnitude

The vector magnitude of a vector in Rn, a = (a1, a2, . . . , an) is calculated using.

|a| =

√√√√ n∑
i=1

a2
i =

√
a2

1 + a2
2 + · · ·+ a2

n. (1.1)

Note that |a| > 0.

Example 1.1

Calculate the magnitude of the vector a = (3, 4, 0).

Solution:

|a| =
√

32 + 42 + 0 =
√

25 = 5.

1.2.3 Unit vectors
A unit vector is denoted by â (referred to as ‘a hat’) is a vector parallel to a with a magnitude of 1.

Definition 1.2: Normalising a vector

The unit vector â that is parallel to the vector a can be calculated using

â = a
|a| , (1.2)

this is known as normalising a vector.

Dr Jon Shiach & Dr Killian O’Brien 6 Computer Graphics Lecture Notes

Back to Table of Contents Chapter 1. Vector Geometry

Example 1.2

Calculate a unit vector that is parallel to a = (3, 4, 0).

Solution:

â = (3, 4, 0)
5 =

(3
5 ,

4
5 , 0

)
.

Checking that |â| = 1

|â| =

√(3
5

)2
+
(4

5

)2
+ 02 =

√
9
25 + 16

25 =
√

1 = 1.

1.2.4 Vector addition and subtraction
The addition of two vectors is achieved by adding the correspond elements in the tuples. Let a = (a1, a2, a3)
and b = (b1, b2, b3) then the sum a + b is calculated by

a + b =

a1
a2
a3

+

b1
b2
b3

 =

a1 + b1
a2 + b2
a3 + b3

 .
Similarly the subtraction of two vectors is achieved by subtracting the corresponding element in the tuples,
i.e.,

a − b =

a1
a2
a3

−
b1
b2
b3

 =

a1 − b1
a2 − b2
a3 − b3

 .

In geometry, the vector addition a + b is achieved by placing the tail of b at the head of a. The resulting
vector points from the tail of a to the head of b. The vector subtraction a − b is achieved by reversing
the direction of b and placing the tail at the head of a.

a

b

a + b

−b

a − b

Figure 1.3: The addition and subtraction of two vectors.

1.2.5 Multiplying a vector by a scalar
The scalar multiple of a vector a = (a1, a2, a3) by the scalar k is defined by

ka =

ka1
ka2
ka3

 .
The effect of multiplying a vector by a scalar is that the magnitude of the vector is scaled by the value of
the scalar. If k > 0 then the direction of the vector ka is the same as a whereas if k < 0 then the vector
ka points in the opposite direction to a (fig. 1.4).

Dr Jon Shiach & Dr Killian O’Brien 7 Computer Graphics Lecture Notes

Chapter 1. Vector Geometry Back to Table of Contents

a

2a

1
2a −a

Figure 1.4: Scalar multiples of the vector a.

1.2.6 The dot product
The product of two vectors can be calculated in two ways: the dot product and the cross product. The
dot product of two vectors a and b is denoted by a · b and returns a scalar quantity and the dot product
is often referred to as the scalar product.

Definition 1.3: Geometric definition of the dot product

The geometric definition of the dot product of two vectors, a,b ∈ Rn, is

a · b = |a||b| cos(θ), (1.3)

where θ is the angle between the two vectors (fig 1.5).

a

b
θ

Figure 1.5: The two vectors a, b and the angle between them θ is related by the dot product.

The value of a dot product can be computed using the algebraic definition of the dot product

Definition 1.4: Algebraic definition of the dot product

The dot product of two vectors a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) in Rn is defined by

a · b =
n∑

i=1
aibi = a1b1 + a2b2 + · · ·+ anbn. (1.4)

For vectors a, b and c ∈ Rn the dot product has the following properties

• commutative: a · b = b · a;

• distributive: a · (b + c) = a · b + a · c;

• orthogonal: the non-zero vectors a and b are orthogonal (perpendicular) if a · b = 0.

Example 1.3

Calculate the dot product of the two vectors a = (3, 4, 0) and b = (5, 12, 0).(i)
Calculate the angle between the two vectors a = (3, 4, 0) and b = (5, 12, 0).(ii)
Two orthogonal vectors are a = (1, 2, 3) and b = (4, x, 6). Determine the value of x.(iii)

Dr Jon Shiach & Dr Killian O’Brien 8 Computer Graphics Lecture Notes

Back to Table of Contents Chapter 1. Vector Geometry

Solution:

a · b =

3
4
0

 ·
 5

12
0

 = 3× 5 + 4× 12 + 0× 0 = 15 + 48 = 63.

(i)

a · b = |a||b| cos(θ)

∴ θ = cos−1
(a · b
|a||b|

)
= cos−1

(63
5× 13

)
= 0.2487.

(ii)

0 =

1
2
3

 ·
4
x
6

 = 4 + 2x+ 18,

∴ x = −11.

(iii)

1.2.7 The cross product

The cross product of two vectors a and b is denoted by a× b and returns a vector that is perpendicular
to both a and b (fig. 1.6).

a

b
a × b

θ

Figure 1.6: The cross product of the two vectors a and b produces a vector that is perpendicular
to the plan that a and b lie on.

Definition 1.5: Geometric definition of the cross product

The cross product of two vectors, a,b ∈ R3, is defined by

a × b = |a||b| sin(θ)n̂, (1.5)

where θ is the angle between a and b and n̂ is a unit vector perpendicular to both a and b.

The cross product of two vectors in R3 can be computed using the determinant formula.

Dr Jon Shiach & Dr Killian O’Brien 9 Computer Graphics Lecture Notes

Chapter 1. Vector Geometry Back to Table of Contents

Definition 1.6: Determinant formula for computing a cross product

The cross product of two vectors, a = (ax, ay, az) and b = (bx, by, bz), is computed using

a × b =

∣∣∣∣∣∣∣∣
i j k
ax ay az

bx by bz

∣∣∣∣∣∣∣∣ =


aybz − azby

azbx − axbz

axby − aybz

 . (1.6)

For vectors a, b, c ∈ R3 and k ∈ R the cross product has the following properties:

• a × a = 0;

• a × b = −(b× a);

• not commutative: a × b 6= b× a;

• distributive: a × (b + c) = a × b + a × c;

• scalar multiplication: ka × b = a × kb = k(a × b).

Example 1.4

Calculate the cross product of the two vectors a = (3, 4, 0) and b = (1, 2, 3).

Solution:

a × b =

∣∣∣∣∣∣∣
i j k
3 4 0
1 2 3

∣∣∣∣∣∣∣ = (4× 3− 0× 2)i− (3× 3− 0× 1)j + (3× 2− 4× 1)k

=

12
−9
2

 .
We can check that this vector is perpendicular to a and b using the dot product, e.g.,

(a × b) · a =

12
−9
2

 ·
3

4
0

 = 36− 36 + 0 = 0,

(a × b) · b =

12
−9
2

 ·
1

2
3

 = 12− 18 + 6 = 0.

1.2.8 Vector basis
A basis is of a vector space V is the set of vectors {e1, e2, . . . , en} which are linearly independent (i.e., no
vector in the basis can be represented as a linear combination of the other vectors in the basis) and span
V . Every other vector v in V can be expressed as a unique linear combination of the vectors in the basis,
i.e.,

v = a1e1 + a2e2 + · · ·+ anen.

where ai are scalars. The dimension of a vector space V is the number of vectors in the basis. For
example, the basis for the Euclidean space R3 is commonly denoted as {i, j,k} where

i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1),

Dr Jon Shiach & Dr Killian O’Brien 10 Computer Graphics Lecture Notes

Back to Table of Contents Chapter 1. Vector Geometry

so R3 is known as a three-dimensional Euclidean space. If U = {u1,u2, . . . ,un} andW = {w1,w2, . . . ,wn}
are two different bases of the same vector space V and [u]W denotes that the vector u is expressed with
respect to the basis W then

[u1]W = a11w1 + a21w2 + · · ·+ an1wn (1.7)
[u2]W = a12w1 + a22w2 + · · ·+ an2wn (1.8)

...
[un]W = a1nw1 + a2nw2 + · · ·+ annwn, (1.9)

where aij are scalars. If v ∈ V where [v]U = (v1, v2, . . . , vn) then

[v]W = v1[u1]W + v2[u2]W + · · ·+ vn[un]W
= v1(a11w1 + a21w2 + · · · an1 + wn) + v2(a12w1 + a22w2 + · · ·+ an2wn) + · · ·

vn(a1nw1 + a2nw2 + · · ·+ annwn)
= (a11v1 + a12v2 + · · ·+ a1nvn)w1 + (a21v1 + a22v2 + · · ·+ a2nvn)w2 + · · ·

(an1v1 + an2v2 + · · ·+ annvn)wn.

We can express this using a matrix equation [v]W = AU→W [v]U where

[v]W =


a11 a12 · · · a1n

a21 a22 · · · a2n
...
an1 an2 · · · ann



v1
v2
...
vn

 .

and AU→W is square matrix here is known as the change of basis matrix. To determine AU→W we need
to solve eqs. (1.7) to (1.9) which can be done by performing Gaussian elimination on the augmented matrix

[w1,w2, . . . ,wn|u1,u2, . . . ,un].

Note that its easy to show that AW→U = A−1
U→W .

Example 1.5

U and W are two basis of a vector space V given by

U =
{[

1
0

]
,

[
1
1

]}
, W =

{[
0
1

]
,

[
−1
1

]}
,

and v = (3, 2) is a vector in V .
Show that U and W are valid basis;(i)
determine [v]U and [v]W ;(ii)
calculate the change of basis matrix AU→W ;(iii)
use the change of basis matrix to express [v]W with respect to basis W .(iv)

Solution:

Dr Jon Shiach & Dr Killian O’Brien 11 Computer Graphics Lecture Notes

Chapter 1. Vector Geometry Back to Table of Contents

To show a basis is valid we need to show that the basis vectors are linearly independent, i.e.,
we need to show that the following linear system does not have non-zero solutions

a1

[
1
0

]
+ a2

[
1
1

]
= 0.

Using Gaussian elimination[
1 1 0
0 1 0

]
−→

[
1 0 0
0 1 0

]
,

so the solution is a1 = a2 = 0 and U is a valid basis. Doing similar for W[
0 −1 0
1 1 0

]
−→

[
1 1 0
0 −1 0

]
−→

[
1 1 0
0 1 0

]
−→

[
1 0 0
0 1 0

]
,

so W is also a valid basis.

(i)

For [v]U we need to solve

α1

[
1
0

]
+ α2

[
1
1

]
= v.

Using Gaussian elimination[
1 1 3
0 1 2

]
−→

[
1 0 1
0 1 2

]
,

so [v]U = (1, 2). Doing similar for [v]W[
0 −1 3
1 1 2

]
−→

[
1 1 2
0 −1 3

]
−→

[
1 1 2
0 1 −3

]
−→

[
1 0 5
0 1 −3

]
,

so [v]W = (5,−3).

(ii)

We need to solve

a11w1 + a21w2 = u1,

a12w1 + a22w2 = u2.

Using Gaussian elimination[
0 −1 1 1
1 1 0 1

]
−→

[
1 1 0 1
0 −1 1 1

]
−→

[
1 1 0 1
0 1 −1 −1

]

−→
[

1 0 1 2
0 1 −1 −1

]
,

therefore

AU→W =
[

1 2
−1 −1

]
.

(iii)

Dr Jon Shiach & Dr Killian O’Brien 12 Computer Graphics Lecture Notes

Back to Table of Contents Chapter 1. Vector Geometry

use the change of basis matrix to determine [v]W .

[v]W = AU→W · [v]U =
[

1 2
−1 −1

] [
1
2

]
=
[

5
−3

]
.

which is the same as [u]W from part (ii).

(iv)

1.3 Points, lines and planes

Computer graphics uses points, line and planes to describe virtual environments. Euclid defined these in
his works The Elements around 300 BCE which is considered the most important mathematical works
ever written. It introduced mathematical concepts of Euclidean geometry, mathematical proofs, logic and
number theory. Euclid defined a point to as “that which has not part”, a line to be of “breadthless length”
and a plane “that which has length and breadth only”.

Definition 1.7: Point

A point in Euclidean space is an object of dimension 0 that has no length, width or thickness.

Definition 1.8: Line

A line in Euclidean space is an object of dimension 1 that has a length but no width or thickness.

Definition 1.9: Plane

A plane in Euclidean space is an object of dimension 2 that has a length and width but no thickness.

(a) point

length

(b) line

length

width

(c) plane

Figure 1.7: A point, line and plane in Euclidean geometry.

1.3.1 Points

Individual points in a virtual environment can be described by their position vectors which is a vector
pointing from the origin of the co-ordinate system to the point (fig. 1.8). Sometimes we abuse the language
and refer to a point with position vector p as simply the point p. But we should still be mindful of the
difference between a point, a single dimensionless position in a space, and the position vector, which is a
vector quantity corresponding to the direction and distance from the origin to the point in question.

1.3.2 Lines

We can define a line, L, in using a single point and a direction vector by the vector equation of a line.

Dr Jon Shiach & Dr Killian O’Brien 13 Computer Graphics Lecture Notes

Chapter 1. Vector Geometry Back to Table of Contents

x

y

z p

(x, y, z)

Figure 1.8: A position p vector points from the origin to the point with co-ordinates (x, y, z).

Definition 1.10: Vector equation of a line

The vector equation of a line, L, is an expression of the form

r = p + td, (1.10)

where p is a position vector of a point on L, d is a vector pointing in a direction parallel to L and
t is some scalar.

Often a line L will be defined as the unique line passing through a pair of points with position vectors
p1 and p2 (fig. 1.9). Then we may use one of the points, p1 say, as the reference point and the vector
d = p2 − p1 as the direction vector. The vector equation of L is then

r = p1 + t(p2 − p1). (1.11)

x

y

z

p1

p2

d

L

Figure 1.9: The line L can be described using the equation r = p1 + t(p2 − p1).

This has the nice aspect of showing that points on L are points with position vectors that are this particular
linear combination of p1 and p2. Moreover, values of the scalar satisfying 0 < t < 1 will correspond to
points on L lying between p1 and p2, and as t varies continuously from 0 to 1, the point r varies continuously
along the line L from p1 to p2.

Example 1.6

The line L passes through two points with position vectors p1 = (5, 4, 1) and p2 = (6,−2, 3).
Calculate the position vector of the point that is a quarter of the way along L between p1
and p2.

(i)

The line L passes through the point with position vector p = (2, 0, 1) and is parallel to
d = (2, 2, 1). Does the point with position vector q = (4, 2, 1) also lie on L?

(ii)

Dr Jon Shiach & Dr Killian O’Brien 14 Computer Graphics Lecture Notes

Back to Table of Contents Chapter 1. Vector Geometry

Solution:
Using eq. (1.11)

r = p1 + t(p2 − p1) =

5
4
1

+ 1
4


 6
−2
3

−
 5

4
1


 =

5
4
1

+

1
4
3
2
1
2

 =

21
4

5
2
3
2

 .
(i)

Using the vector equation of a line eq. (1.10)

r = p + td4
2
1

 =

2
0
1

+ t

2
2
1

 .
So we have the system

4 = 2 + 2t,
2 = 2t,
1 = 1 + t.

The second equation gives t = 1 which substituted into the third equation gives 1 = 2 which
is a contradiction so q does not lie on L.

(ii)

1.3.3 Planes
We can define a plane, P , in three dimensions by specifying three distinct points in R3. A set of three such
points will define a unique plane passing through the points. Let the points have positions vectors p1, p2
and p3. If we focus on the first point as our reference point on the plane then the two vectors p2−p1 and
p3 − p1 will be two linearly independent vectors parallel to the plane P (fig. 1.10). As such, any point on
P , will have position vector r of the form

r = p1 + a(p2 − p1) + b(p3 − p1), (1.12)

where a, b ∈ R are some scalars.

x

y

z

P
p1 p2

p3 r

a(p2 − p1)

b(p3 − p1)

Figure 1.10: A point on a plane r can be determined by a linear combination of the vectors
p2 − p1 and p3 − p1.

The algebra dealing with planes can be greatly simplified by considering the normal vector to a plane.

Dr Jon Shiach & Dr Killian O’Brien 15 Computer Graphics Lecture Notes

Chapter 1. Vector Geometry Back to Table of Contents

Definition 1.11: Normal vector

The normal vector to a plane is a vector that is perpendicular to the plane. If the points with
position vectors p1, p2 and p3 lie on a plane P then the normal vector to P is (fig. 1.11)

n = (p2 − p1)× (p3 − p1). (1.13)

Note that the normal vector to a plane can point in two opposite directions.

x

y

z

P
p1 p2

p3

n = (p2 − p1)× (p3 − p1)

p3 − p1

p2 − p1

Figure 1.11: The normal vector to a plane is calculated using n = (p2 − p1)× (p3 − p1).

Suppose now that r is the position vector of a point on the plane P . Then the vector r−p will be a vector
with direction parallel to P . As such it will satisfy

n · (r− p1) = 0,

which using the distributivity property of the dot product gives the vector equation of a plane.

Definition 1.12: Vector equation of a plane

The position vector of a point, r, that lies on the plane, P , with normal vector, n, and the position
vector a point, p, known to lie on P can be calculated using the vector equation of a plane

n · r = n · p. (1.14)

Note that the right-hand side does not depend on the particular point r. So the quantity n · p is a fixed
constant associated to the plane P and the choice of n. Let us denote it as s = n · p then the vector
equation of a plane can be expressed as

n · r = s.

So any point r that satisfies this equation will lie on the plane P .

Example 1.7

The plane P passes through the three points p1 = (1, 0, 3), p2 = (2, 1, 1) and p3 = (0, 1, 3).
Determine the vector equation that describes P .

(i)

Dr Jon Shiach & Dr Killian O’Brien 16 Computer Graphics Lecture Notes

Back to Table of Contents Chapter 1. Vector Geometry

Does the point with position vector p4 = (1, 2, 5) lie on the plane from part (i)?(ii)

Solution:
Calculating the normal vector

n = (p2 − p1)× (p3 − p1) =

∣∣∣∣∣∣∣
i j k
1 1 −2
−1 1 0

∣∣∣∣∣∣∣ =

2
2
2

 .
Calculate the scalar s = n · p1

s =

2
2
2

 ·
1

0
3

 = 2 + 0 + 6 = 8,

therefore the vector equation of the plane is2
2
2

 · r = 8.

(i)

2
2
2

 ·
1

2
5

 = 2 + 4 + 10 = 16,

since r · n = 16 6= 8 so p4 does not lie on the plane P .

(ii)

1.4 Distance calculations
By using vectors to describe points, lines and planes is makes calculating distances between a point and a
line easier than using Cartesian co-ordinates.

1.4.1 Distance from a point to a line
Consider the diagram in fig. 1.12 which shows a line which passes through the point at position p and is
parallel to the vector d. Another point, q, lies somewhere off the line and we wish to know the distance,
d, from q to the line. Depending where on the line we measure the distance we will get a different values
for d, however, this will be at a minimum where the vector joining some point on the line, r, to q is
perpendicular to r.

p r

q

d

d

Figure 1.12: The distance between a point and a line

The position of r is given by the vector equation of a line

r = p + tv,

Dr Jon Shiach & Dr Killian O’Brien 17 Computer Graphics Lecture Notes

Chapter 1. Vector Geometry Back to Table of Contents

and we know that the dot product between two perpendicular vectors is zero

v · (q − r) = 0,

so

v · (q − p− tv) = 0

which can be rearranged to solve for t

t = v · (q − p)
v · v .

The distance from q to r is the magnitude of the vector q − r, i.e.,

d = |q − r|.

Example 1.8

A line, L, passes through the point p = (1, 0, 2) and is parallel to the vector v = (2,−1, 1). Another
point is positioned at q = (6, 4, 5), calculate the shortest distance between the point and the line.

Solution:

t = v · (q − p)
v · v

=

 2
−1
1

 ·

6

4
5

−
1

0
2




 2
−1
1

 ·
 2
−1
1


= 3

2 .

So the point on the line that is closest to q is

r = p + tv =

1
0
2

+ 3
2

 2
−1
1

 =

 4
−3

2
7/2

 ,
and the distance between the point and the line is

d = |q − r| =

∣∣∣∣∣∣∣
6

4
5

−
 4
−3

2
7/2


∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
 2

11/2
3/2


∣∣∣∣∣∣∣ = 6.0415.

1.4.2 Distance from a point to a plane
Consider the diagram in fig. 1.13 which shows a plane, P , defined by the point p and the normal vector
n. Another point which lies off the plane is q and we wish to find the distance, d, from q to the plane P .
Similar to the point-line distance problem, the shortest distance of q from P is the perpendicular distance.

The geometric definition of the dot product between the vectors q − p and n is

(q − p) · n = |q − p||n| cos(θ)

where θ is the angle between n and q − p. If we consider the right-angled triangle where the hypotenuse
is the line p→ q and the adjacent side is parallel to n then

cos(θ) = d

|q − p| .

Dr Jon Shiach & Dr Killian O’Brien 18 Computer Graphics Lecture Notes

Back to Table of Contents Chapter 1. Vector Geometry

P

n

p

q

d

θ

Figure 1.13: The distance between a point and a plane.

Substituting this into the geometric definition of the dot product we have

(q − p) · n = d|n|

so

d = (q − p) · n
|n| = (q − p) · n̂. (1.15)

Example 1.9

A plane, P , is defined by the point p = (1, 1, 3) and the normal vector n = (1,−1, 1). Calculate
the distance of the point at position q = (4,−3, 2) to P .

Solution:

d = (q − p) · n
|n| =


 4
−3
2

−
1

1
3


 ·

 1
−1
1


∣∣∣∣∣∣∣
 1
−1
1


∣∣∣∣∣∣∣

= 6√
3

= 2
√

3 = 3.4641.

Dr Jon Shiach & Dr Killian O’Brien 19 Computer Graphics Lecture Notes

Chapter 1. Vector Geometry Back to Table of Contents

1.5 Lab exercises
Use MATLAB to calculate the solutions to examples 1.1 to 1.9.

The solutions are given on page 79.

Dr Jon Shiach & Dr Killian O’Brien 20 Computer Graphics Lecture Notes

Chapter 2

Translation, Rotation and Scaling
Transformations

2.1 Linear Transformations
Definition 2.1: Linear transformation

A linear transformation between two vector spaces, Rm and Rn, is a map T : Rm → Rn such that
for u,v ∈ Rm and some scalar α the following hold

T (u + v) = T (u) + T (v);(i)

T (αu) = αT (u).(ii)

Note that if we can show that T (u + αv) = T (u) + αT (v) then conditions (i) and (ii) are satisfied.

2.1.1 Matrix representation of linear transformations
In computer graphics it is convenient to use matrices to represent linear transformations. Let {i, j,k} be
a basis for R3 then every vector in R3 can be uniquely determined by the coefficients x, y and z by

u = xi + yj + zk.

If T : R3 → R3 is a linear transformation then by section 2.1 T (u) can be written as

T (xi + yj + zk) = xT (i) + yT (j) + zT (k),

which means that T (u) is determined by the vectors T (i), T (j) and T (k). Suppose these vectors are

T (i) = ai + dj + gk,
T (j) = bi + ej + hk,
T (k) = ci + f j + ik,

where a, b, . . . , i are scalars then T (u) is

T (u) = (ai + bj + ck)x+ (bi + ej + hk)y + (ci + f j + ik)z
= (ax+ by + cz)i + (dx+ ey + fz)j + (gx+ hy + iz)k

=

ax+ by + cz
dx+ ey + fz
gx+ hy + iz

 =

a b c
d e f
g h i


xy
z


= Au.

21

Chapter 2. Translation, Rotation and Scaling Transformations Back to Table of Contents

So the matrixA represents the linear transformation T with respect to the basis {i, j,k}. This representation
provides an exact correspondence between linear transformations and matrices. Each linear transformation
is represented by a unique matrix, and each matrix is the representation of a unique linear transformation.

The same linear transformation can be applied to multiple vectors in the space. Let A be the matrix form
of the linear transformation T and u1,u2, . . . ,un ∈ Rn are column vectors then

T (u1,u2, . . . ,un) = A ·
[
u1 u2 · · · un

]

We can form a co-ordinate matrix, P , which contains u1,u2, . . . ,un, e.g., if ui = (xi, yi, zi) then

P =

x1 x2 · · · xn

y1 y2 · · · yn

x1 y2 · · · zn


and applying the linear transformation have

A · P =

a b c
d e f
g h i


x1 x2 · · · xn

y1 y2 · · · yn

x1 y2 · · · zn


=

ax1 + dy1 + gz1 ax2 + dy2 + gz2 · · · axn + dyn + gzn

dx1 + ey1 + fz1 dx2 + ey2 + fz2 · · · dxn + eyn + fzn

gx1 + hy1 + iz1 gx2 + hy2 + iz2 · · · gxn + hyn + izn

 .

Note how the same transformation has been applied to all columns of P . This is incredibly useful in
computer graphics because it allows us to apply the same linear transformations to thousands of points
using a single matrix multiplication.

Example 2.1

A transformation T : R2 → R2 is defined by

T

[
x
y

]
=
[
2x
3y

]

Show that T is a linear transformation;(i)
determine the matrix that represents T ;(ii)
use the matrix from part (ii) to calculate T (u1), T (u2) and T (u3) where u1 = (1, 2), u2 =
(0, 3) and u3 = (−1, 4).

(iii)

Solution:
Let u = (u1, u2), v = (v1, v2) where ui, vi ∈ R and α is any scalar

T (u + αv) = T

([
u1
u2

]
+ α

[
v1
v2

])
= T

[
u1 + αv1
u2 + αv2

]

=
[
2u1 + 2αv1
3u2 + 3αv2

]
=
[
2u1
3u2

]
+
[
2αv1
3αv2

]
= T (u) + αT (v).

So T is a linear transformation.

(i)

Dr Jon Shiach & Dr Killian O’Brien 22 Computer Graphics Lecture Notes

Back to Table of Contents Chapter 2. Translation, Rotation and Scaling Transformations

We need to find the matrix that satisfies[
2x
3y

]
=
[
a11 a12
a21 a22

] [
x
y

]

therefore [
2x
3y

]
=
[
2 0
0 3

] [
x
y

]

so the matrix that represents T is

A =
[
2 0
0 3

]
.

(ii)

The co-ordinate matrix is

P =
[
1 0 −1
2 3 4

]
,

and applying the transformation

A · P =
[
2 0
0 1

] [
1 0 −1
2 3 4

]
=
[
2 0 −2
6 9 12

]
.

so T (u1) = (2, 6), T (u2) = (0, 9) and T (u) = (−2, 12).

(iii)

2.1.2 Inverse transformations
Definition 2.2: Inverse linear transformation

If T : Rn → Rn is a linear transformation that is one-to-one map and v = T (u) for all u,v ∈ Rn,
then the inverse transformation is denoted by T−1 : Rn → Rn and defined by

T−1(v) = u.

If A is the transformation matrix for the one-to-one linear transformation T (u) then

T−1(u) = A−1u,

where A−1 is the matrix inverse of A. This is useful as it allows us to undo the effects of a linear
transformation.

Example 2.2

A transformation T : R2 → R2 is defined by

T

[
x
y

]
=
[
2x
3y

]

determine the matrix representation of T−1;(i)
hence determine the inverse transformation T−1(u).(ii)

Dr Jon Shiach & Dr Killian O’Brien 23 Computer Graphics Lecture Notes

Chapter 2. Translation, Rotation and Scaling Transformations Back to Table of Contents

Solution:
The matrix that represents T−1 is the inverse of the matrix from example 2.1 part (ii). Using
A−1 = adj(A)/det(A)

T =
[
2 0
0 3

]
,

T−1 =
adj

([
3 0
0 2

])

det
([

2 0
0 3

]) =

[
3 0
0 2

]
6 =

[
1
2 0
0 1

3

]
.

(i)

T−1
[
x
y

]
=
[
1/2 0
0 1/3

] [
x
y

]
=
[
x/2
y/3

]
.

(ii)

2.1.3 Composite transformations

Definition 2.3: Composite transformations

The composite transformations of two linear transformations S : Rn → Rp and T : Rm → Rp is
denoted by S ◦ T and is the transformation S ◦ T : Rm → Rn defined by

(S ◦ T)(u) = S(T (u)),

for all u ∈ Rm.

The composite transformation (S ◦ T)(u) is the same as the result of first applying the transformation
T (u) before applying the transformation S to the result, i.e., the order of which the transformations are
applied is read from right-to-left.

If S and T are the transformation matrices for the transformations S(u) and T (u), then

(S ◦ T)(u) = S · Tu.

This is another incredibly useful result as it means we can apply multiply linear transformations using matrix
multiplication. For example, let T1, T2, . . . , Tn be n linear transformations applied to u with equivalent
matrix forms then

(Tn ◦ Tn−1 ◦ · · · ◦ T2 ◦ T1)(u) = Tn · Tn−1 · · ·T2 · T1u

In practice, it is often advantageous to pre-calculate the product of the transformation matrices to give a
composite transformation matrix, this means a composite transformation can be applied with a single
matrix multiplication

A = Tn · Tn−1 · · ·T2 · T1.

The composite transformation is then applied to u using

(Tn ◦ Tn−1 ◦ · · · ◦ T2 ◦ T1)(u) = Au.

Dr Jon Shiach & Dr Killian O’Brien 24 Computer Graphics Lecture Notes

Back to Table of Contents Chapter 2. Translation, Rotation and Scaling Transformations

Example 2.3

The two linear transformations S : R2 → R2 and T : R2 → R2 are defined by

S

[
x
y

]
=
[
2y
x

]
, T

[
x
y

]
=
[
3x
2y

]
.

Without using matrices, calculate (S ◦ T)
[
3
1

]
;(i)

Determine the matrices A and B such that S(u) = Au and T (u) = Bu;(ii)

use the matrices from part (ii) to calculate (S ◦ T)
[
3
1

]
;(iii)

calculate (T−1 ◦ S ◦ T)
[
1
2

]
.(iv)

Solution:

(S ◦ T)
[
3
1

]
= S

(
T

[
3
1

])
= S

[
9
2

]
=
[
4
9

](i)

The matrix equation that represents S(u) is[
a11 a12
a21 b22

] [
x
y

]
=
[
2y
x

]
,

therefore a11 = 0, a12 = 2, a21 = 1 and a22 = 0 so

A =
[
0 2
1 0

]
.

The matrix equation that represents T (u) is[
b11 b12
b21 b22

] [
x
y

]
=
[
3x
2y

]
,

therefore b11 = 3, b12 = 0, b21 = 0 and b22 = 2 so

B =
[
3 0
0 2

]
.

(ii)

(S ◦ T)
[
3
1

]
= A ·B ·

[
3
1

]
=
[
0 2
1 0

] [
3 0
0 2

] [
3
1

]
=
[
0 4
3 0

] [
3
1

]
=
[
4
9

]
.

(iii)

(T−1 ◦ S ◦ T)
[
1
2

]
= B−1 ·A ·B ·

[
1
2

]
=
[

1
3 0
0 1

2

] [
0 2
1 0

] [
3 0
0 2

] [
1
2

]
=
[

0 4
3

3
2 0

] [
1
2

]
=
[

8
3
3
2

]
.

(iv)

Dr Jon Shiach & Dr Killian O’Brien 25 Computer Graphics Lecture Notes

Chapter 2. Translation, Rotation and Scaling Transformations Back to Table of Contents

2.2 Translation

A translation is a linear transformation that moves a set of points by the same distance in a given direction.
For example, the diagram in fig. 2.1 shows the translation of the point a position v by the translation vector
p.

x

y

z
v

w
p

Figure 2.1: The translation of point v to w by the translation vector p.

Using vector addition it is easy to see that

w = v + p.

To represent translation using a single transformation matrix we need to use homogeneous co-ordinates.
Let v = (x, y, z, 1) and p = (px, py, pz, 1) be the homogeneous co-ordinates in R3 then translation can be
written as the matrix equation w = Av, i.e.,

w =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44



x
y
z
1

 =


x+ pz

y + py

z + pz

1

 ,

Considering the first row of A we the values of a11, a12, a13 and a14 to satisfy

a11x+ a12y + a13z + a14 = x+ px,

so a11 = 1, a12 = 0, a13 = 0 and a14 = px. Doing similar for the other three rows of A we have

A =


1 0 0 px

0 1 0 py

0 0 1 pz

0 0 0 1

 , (2.1)

which is known as the translation matrix and usually denoted by T .

Example 2.4

A triangle is defined by three points with position vectors v1 = (1, 0, 1), v2 = (3, 0, 1) and v3 =
(2, 0, 3). The triangle is translated by the translation vector p = (3, 0, 1). Calculate the positions
of the three points after the translation has been applied.

Solution:

Dr Jon Shiach & Dr Killian O’Brien 26 Computer Graphics Lecture Notes

Back to Table of Contents Chapter 2. Translation, Rotation and Scaling Transformations

The translation matrix is

T =


1 0 0 3
0 1 0 0
0 0 1 1
0 0 0 1

 ,
and the homogeneous co-ordinate matrix is

P =


1 3 2
0 0 0
1 1 3
1 1 1

 .
Applying the translation

T · P =


1 0 0 4
0 1 0 0
0 0 1 1
0 0 0 1




1 3 2
0 0 0
1 1 3
1 1 1

 =


4 6 5
0 0 0
2 2 4
1 1 1

 .
So w1 = (5, 0, 2), w2 = (7, 0, 2) and w3 = (6, 0, 4). The result of the translation can be seen in
fig. 2.2. Note that the shape of the triangle has been preserved because all three points have been
translated by the same translation vector.

x

z

v1 v2

v3

w1 w2

w3

p

Figure 2.2: Translation of the three points v1, v2 and v3 by the translation vector p = (3, 0, 1).

2.2.1 Inverse translation

Definition 2.4: Inverse linear transformation

If f : Rn → Rn is a linear transformation that is one-to-one that maps any vector v to w then the
inverse transformation f−1 : Rn → Rn maps w to v.

Translation is a one-to-one map in R3 so it has an inverse transformation. Translation is simply the addition
of the vector p, i.e., w = v + p, so the inverse of translation is v = w− p, therefore

T−1 =


1 0 0 −px

0 1 0 −py

0 0 1 −pz

0 0 0 1

 . (2.2)

Dr Jon Shiach & Dr Killian O’Brien 27 Computer Graphics Lecture Notes

Chapter 2. Translation, Rotation and Scaling Transformations Back to Table of Contents

2.3 Scaling

Scaling is a linear transformation that moves a point closer or further away from the origin by a certain
scaling vector. Consider the diagram shown in fig. 2.3 where the point at position v = (vx, vy, vz) has
been scaled by the scaling vector s = (sx, sy, sz) to change its position to w.

x

y

z

v

w

vx

sxvx

vz

vy

syvy

szvz

Figure 2.3: The scaling of point v = (vx, vy, vz) by the scaling vector s = (sx, sy, sz).

The matrix representation of the scaling transformation is determined using the same method as seen in
section 2.2 which results in the following scaling matrix. Note that we could have represented scaling
in R3 using a 3× 3 matrix and Cartesian co-ordinates but since we require homogeneous co-ordinates for
the matrix representation of translation and we want to be able to combine transformations then we use
homogeneous co-ordinate for scaling (and any other transformation).

S =


sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

 . (2.3)

A scaling vector s = (1, 1, 1) will result in S = I and the position of any point that is scaled will be
unchanged.

Example 2.5

A triangle is defined by three points with position vectors v1 = (1, 0, 1), v2 = (3, 0, 1) and v3 =
(2, 0, 3). The triangle is scaled by a the scaling vector s = (3, 1, 2). Calculate the positions of the
three points after the scaling has been applied.

Solution:
The scaling matrix is

S =


3 0 0 0
0 1 0 0
0 0 2 0
0 0 0 1

 ,

Dr Jon Shiach & Dr Killian O’Brien 28 Computer Graphics Lecture Notes

Back to Table of Contents Chapter 2. Translation, Rotation and Scaling Transformations

and the homogeneous co-ordinate matrix is

P =


1 3 2
0 0 0
1 1 3
1 1 1

 .
Applying the scaling

S · P =


3 0 0 0
0 1 0 0
0 0 2 0
0 0 0 1




1 3 2
0 0 0
1 1 3
1 1 1

 =


3 9 6
0 0 0
2 2 6
1 1 1

 .
So w1 = (3, 0, 2), w2 = (9, 0, 2) and w3 = (6, 0, 6). The result of the scaling can be seen in fig. 2.4.
Note that the shape of the triangle has changed since the scaling is not the same along the x and
z axes.

x

z

v1 v2

v3

w1 w2

w3

Figure 2.4: Scaling of the three points v1, v2 and v3 by the scaling vector s = (3, 1, 2).

2.3.1 Inverse scaling

Scaling the position vector v = (vx, vy, vz, 1) by the scaling vector s = (sx, sy, sz, 1) results in w =
(sxvx, syvy, szvz, 1), so the inverse of scaling is v = (wx/sx, wy/sy, wz/sz, 1), therefore

S−1 =


1/sx 0 0 0

0 1/sy 0 0
0 0 1/sz 0
0 0 0 1

 . (2.4)

2.3.2 Scaling about the centre of a shape

We have seen in example 2.5 that scaling the triangle resulted in the centre of the triangle shifting position.
This was because scaling was applied to a shape whose centre was not at the original. To preserve the
position of the centre of a shape when scaling we first need to translate the points that define the shape
to the origin, which means that the translation vector if −c where c is the centre of the shape. Then we
can perform the scaling before using the inverse translation so that the centre of the shape is back at c
(fig. 2.5).

So we have the following composite transformation matrix

A = T−1 · S · T

Dr Jon Shiach & Dr Killian O’Brien 29 Computer Graphics Lecture Notes

Chapter 2. Translation, Rotation and Scaling Transformations Back to Table of Contents

x

z

−c

(a) translate by −c

x

z

(b) scale points

x

z

c

(c) translate by c

Figure 2.5: Scaling a shape about its centre.

Example 2.6

A triangle is defined by three points with position vectors v1 = (2, 0, 2), v2 = (4, 0, 2) and v3 =
(3, 0, 4). The triangle is scaled by the scaling vector s = (2, 1, 2) about its centre. Calculate the
positions of the three points after the scaling has been applied.

Solution:
The centre of the triangle is at

c = 1
3(v1 + v2 + v3) = 1

3


2

0
2

+

4
0
2

+

3
0
4


 =

3
0
8
3

 .
so the composite transformation matrix is

A = T−1 · S · T =


1 0 0 3
0 1 0 0
0 0 0 8

3
0 0 0 1




2 0 0 0
0 1 0 0
0 0 2 0
0 0 0 1




1 0 0 3
0 1 0 0
0 0 0 8

3
0 0 0 1

 =


2 0 0 −3
0 1 0 0
0 0 2 −8

3
0 0 0 1

 .
and the homogeneous co-ordinate matrix is

P =


2 4 3
0 0 0
2 2 4
1 1 1

 .
Applying the composite transformation

A · P =


2 0 0 −3
0 1 0 0
0 0 2 −8

3
0 0 0 1




2 4 3
0 0 0
2 2 4
1 1 1

 =


1 5 3
0 0 0
4
3

4
3

16
3

1 1 1

 .
So w1 = (1, 0, 4

3), w2 = (5, 0, 4
3) and w3 = (3, 0, 16

3). The result of the scaling can be seen in
fig. 2.6. Note that the shape of the triangle has remained the same.

Dr Jon Shiach & Dr Killian O’Brien 30 Computer Graphics Lecture Notes

Back to Table of Contents Chapter 2. Translation, Rotation and Scaling Transformations

x

z

v1 v2

v3

w1 w2

w3

Figure 2.6: Scaling of the three points v1, v2 and v3 by the scaling vector s = (2, 1, 2) about
centre of the three points.

2.4 Rotation
Rotation is a linear transformation that rotates a set of points by some angle about one of the axes that
define the frame of the space. In R3 we can rotate around the x, y and z axes and we assume that the
direction of rotation is in the anti-clockwise when looking along the axis towards the origin (fig. 2.7).

x

y

z

Figure 2.7: Rotation is assumed to be defined as anti-clockwise around the axis when viewed
looking down towards the origin.

To determine the rotation transformation we shall consider the rotation about the x axis. Consider the
diagram in fig. 2.8 which is fig. 2.7 view looking down the x axis where the point with position vector v is
rotated by θ about the x axis to the point with position vector w.

y

z

(x, y, z)

(x,wy, wz)

v
w

φ
θ

Figure 2.8: Rotation about the x axis.

Let v = (x, y, z) and w = (x,wy, wz) (note the x co-ordinate is unchanged since we are rotating around
the x axis), then using trigonometry the position vectors v and w are

v = (x, r cos(φ), r sin(φ)),
w = (x, r cos(φ+ θ), r sin(φ+ θ)),

Dr Jon Shiach & Dr Killian O’Brien 31 Computer Graphics Lecture Notes

Chapter 2. Translation, Rotation and Scaling Transformations Back to Table of Contents

where r = |v| = |w|. Using compound angle formulae

cos(φ+ θ) = cos(φ) cos(θ) + sin(φ) sin(θ),
sin(φ+ θ) = sin(φ) cos(θ)− cos(φ) sin(θ),

then we can write w using

wy = r cos(φ) cos(θ) + r sin(φ) sin(θ),
wz = r sin(φ) cos(θ)− r cos(φ) sin(θ),

and since y = r cos(φ) and z = r sin(φ) these simplify to

wy = y cos(θ) + z sin(θ),
wz = −y sin(θ) + z cos(θ),

Using homogeneous co-ordinates to be consistent with translation we can write this as the matrix equation
wx

wy

wz

1

 =


1 0 0 0
0 cos(θ) sin(θ) 0
0 − sin(θ) cos(θ) 0
0 0 0 1



x
y
z
1

 .

So the rotation by angle θ about the x axis in R3 can be represented by the following rotation matrix

Rx =


1 0 0 0
0 cos(θ) sin(θ) 0
0 − sin(θ) cos(θ) 0
0 0 0 1

 . (2.5)

Doing similar for the rotation about the y and z axes gives

Ry =


cos(θ) 0 − sin(θ) 0

0 1 0 0
sin(θ) 0 cos(θ) 0

0 0 0 1

 , (2.6)

Rz =


cos(θ) sin(θ) 0 0
− sin(θ) cos(θ) 0 0

0 0 1 0
0 0 0 1

 . (2.7)

Example 2.7

A triangle is defined by three points with position vectors v1 = (4, 0, 1), v2 = (6, 0, 1) and v3 =
(5, 0, 3). The triangle is rotated by angle θ = π/4 anti-clockwise about the y axis. Calculate the
positions of the three points after the scaling has been applied.

Solution:
The rotation matrix is

Ry =


cos(π/4) 0 − sin(π/4) 0

0 1 0 0
sin(π/4) 0 cos(π/4) 0

0 0 0 1

 =


√

2/2 0 −
√

2/2 0
0 1 0 0√
2/2 0

√
2/2 0

0 0 0 1



Dr Jon Shiach & Dr Killian O’Brien 32 Computer Graphics Lecture Notes

Back to Table of Contents Chapter 2. Translation, Rotation and Scaling Transformations

and the homogeneous co-ordinate matrix is

P =


4 6 5
0 0 0
1 1 3
1 1 1

 .
Applying the rotation

Ry · P =


√

2/2 0 −
√

2/2 0
0 1 0 0√
2/2 0

√
2/2 0

0 0 0 1




4 6 5
0 0 0
1 1 3
1 1 1

 =


3
√

2/2 5
√

2/2
√

2
0 0 0

5
√

2/2 7
√

2/2 4
√

2
1 1 1

 .
So w1 = (3

√
2/2, 0, 5

√
2/2), w2 = (5

√
2/2, 0, 7

√
2/2), and w3 = (

√
2, 0, 4

√
2). The result of the

rotation can be seen in fig. 2.9. Note that the triangle has been rotated about the origin as such
the position of its centre has changed.

x

z

v1 v2

v3w1

w2

w3

π

4

Figure 2.9: Rotation of the three points v1, v2 and v3 by angle θ = π/4 anti-clockwise about
the y axis.

2.4.1 Rotating about the centre of a shape

We have seen in example 2.7 the centre of triangle shifted position because we rotate around the origin.
So, similar to scaling about the centre of a shape, we need to translate the points by −c where c is the
centre of the shape, perform the rotation before translating back by c.

x

z

(a) translate by −c

x

z

(b) rotate points

x

z

(c) translate by c

Figure 2.10: Rotating a shape about its centre.

So we have the following composite transformation matrix

A = T−1 ·Ry · T

Dr Jon Shiach & Dr Killian O’Brien 33 Computer Graphics Lecture Notes

Chapter 2. Translation, Rotation and Scaling Transformations Back to Table of Contents

2.4.2 Inverse rotation
The inverse of rotating a position vector by angle θ is to rotate it by angle −θ. Since cos(−θ) = cos(θ)
and sin(−θ) = − sin(θ) then the inverse rotation matrices are

R−1
x =


1 0 0 0
0 cos(θ) − sin(θ) 0
0 sin(θ) cos(θ) 0
0 0 0 1

 , (2.8)

R−1
y =


cos(θ) 0 sin(θ) 0

0 1 0 0
− sin(θ) 0 cos(θ) 0

0 0 0 1

 , (2.9)

R−1
z =


cos(θ) − sin(θ) 0 0
sin(θ) cos(θ) 0 0

0 0 1 0
0 0 0 1

 . (2.10)

2.4.3 Rotations around other axes
Suppose we wish to rotate R3 by an angle θ about a general line, L, where L does not pass through the
original and is not parallel to any of the three axes. To achieve this we first need to apply translation and
rotation so that L along one of the three axes, rotate about this axis by θ before reversing the rotation
and translation operations. Each of the individual transformations can be represented by a matrix so the
composite transformation that achieves the rotation about L is a product of the individual matrices.

x

y

z

p

d

L

Figure 2.11: Rotation about the line L : r = p + td.

For example, consider the diagram in fig. 2.11 where we wish to rotate about the line L : r = p + td. The
steps required to do this are as follows:

1. First we need to translate by −p so that L passes through the origin, so the first transformation
matrix is

T1 =


1 0 0 −px

0 1 0 −py

0 0 1 −px

0 0 0 1


where p = (px, py, pz). This results in the diagram shown in fig. 2.12(a).

2. Now consider the direction vector d = (dx, dy, dz) of L as shown in fig. 2.12(a). We will use v to
denote the magnitude of the projection of d onto the xy plane. We wish to rotate R3 about the z
axis so that d lies on the yz plane so that dx = 0. If φ is the angle between side v and the y axis

Dr Jon Shiach & Dr Killian O’Brien 34 Computer Graphics Lecture Notes

Back to Table of Contents Chapter 2. Translation, Rotation and Scaling Transformations

then the matrix for achieving this rotation is

Rz =


cos(φ) sin(φ) 0 0
− sin(φ) cos(φ) 0 0

0 0 1 0
0 0 0 1

 =


dy/v dx/v 0 0
−dx/v dy/v 0 0

0 0 1 0
0 0 0 1

 .
Performing this rotation gives the vector d in fig. 2.12(b).

3. Now consider d in fig. 2.12(b) and we will use d to denote the magnitude of d. We rotate R3

clockwise around the x axis so that d is brought into alignment with the z axis so that dx = 0
and dy = 0. Suppose ψ is the angle between the sides d and v in fig. 2.12(b) then the matrix
for achieving this rotation is (note that the signs of the sin functions are swapped because we are
rotating in the clockwise direction)

Rx =


1 0 0 0
0 cos(ψ) − sin(ψ) 0
0 sin(ψ) cos(ψ) 0
0 0 0 1

 =


1 0 0 0
0 v/d −dz/d 0
0 dz/d v/d 0
0 0 0 1

 .
Performing this rotation gives the vector d in fig. 2.12(c)

4. The direction vector d, and hence the line L, now lies on the y axis. Now we can perform the rotation
of R3 by angle θ about the y axis. The rotation matrix for performing this rotation is

Ry =


cos(θ) 0 − sin(θ) 0

0 1 0 0
sin(θ) 0 cos(θ) 0

0 0 0 1

 .

5. Rotating d so that it points in its original direction is achieved using R−1
x and R−1

z .

6. Translating L so that it passes through p is achieved using T−1.

x

y

z

dz

v

d

dx

dy

(a) rotate around z axis.
x

y

z

d

v

dz

(b) rotate around x axis
x

y

z

d

(c) rotate around y axis

Figure 2.12: Rotation about the line L : r = p + td

Multiplying these matrices together in the correct order will gives the composite transformation matrix A
representing rotation by an angle θ anti-clockwise around the line L : r = p + td

A = T−1 ·R−1
z ·R−1

x ·Ry ·Rx ·Rz · T.

Note that we could have chosen other axes to rotate around to achieve the same goal. The choice of axes
is arbitrary and may depend upon which octant d is pointing towards.

Dr Jon Shiach & Dr Killian O’Brien 35 Computer Graphics Lecture Notes

Chapter 2. Translation, Rotation and Scaling Transformations Back to Table of Contents

Example 2.8

A flight simulation program is simulating the flight of an aeroplane positioned with its centre of
mass at p = (10, 5, 50) travelling in the direction given by the vector d = (2,−1,−3). The user
performs a roll of the plane by rotating about d by angle θ = π/6 in the anti-clockwise direction.
Calculate the composite transformation matrix that performs this action.

Solution:
First we translate by −p so that the centre of the plane is at the origin (fig. 2.13(a))

T =


1 0 0 −px

0 1 0 −py

0 0 1 −pz

0 0 0 1

 =


1 0 0 −10
0 1 0 −5
0 0 1 −50
0 0 0 1

 .
Now we need to consider which rotations we apply so that d points along one of the axes. This
decision is arbitrary but in this case since dx is positive then rotating so that d points along the
x axis would require the fewest rotations. Looking at fig. 2.13(b) this means can first rotate R3

anti-clockwise around the z axis so that d is in the xz plane. If v is the magnitude of the projection
of d onto the xy plane and φ is the angle between side v and the x axis then the matrix for achieving
this rotation is (note that dy < 0)

Rz =


cos(φ) sin(φ) 0 0
− sin(φ) cos(φ) 0 0

0 0 1 0
0 0 0 1

 =


dx/v dy/v 0 0
−dy/v dx/v 0 0

0 0 1 0
0 0 0 1

 =


2/
√

5 −1/
√

5 0 0
1/
√

5 2/
√

5 0 0
0 0 1 0
0 0 0 1


We can check whether this rotation is correct by multiplying it by the homogeneous form of d

Rz · d =


2/
√

5 −1/
√

5 0 0
1/
√

5 2/
√

5 0 0
0 0 1 0
0 0 0 1




2
−1
−3
1

 =


√

5
0
−3
1

 .
Since dy = 0 then d is now in the xz plane. Now we need to rotate R3 clockwise around the y
axis so that d points along the x axis (remember that the direction of rotation is based on the view
looking down the axis towards the origin). If ψ is the angle between the x axis and d in fig. 2.13(c)
then the matrix for achieving this rotation is (note that dz < 0)

Ry =


cos(ψ) 0 sin(ψ) 0

0 1 0 0
− sin(ψ) 0 cos(ψ) 0

0 0 0 1

 =


v/|d| 0 dz/|d| 0

0 1 0 0
−dz/|d| 0 v/|d| 0

0 0 0 1

 =


√

5/
√

14 0 3/
√

14 0
0 1 0 0

−3/
√

14 0
√

5/
√

14 0
0 0 0 1

 .
Again, we can check whether this rotation is correct by multiplying it by Rz · d

Ry ·Rz · d =


√

5/
√

14 0 3/
√

14 0
0 1 0 0

−3/
√

14 0
√

5/
√

14 0
0 0 0 1



√

5
0
−3
1

 =


13/
√

14
0
0
1

 .
Since dy = 0, dz = 0 and dx > 0 then d is now pointing along the x axis (fig. 2.8). Now we perform
the rotation of R3 anti-clockwise around the x axis by angle θ = π/6 and the matrix for achieving
this rotation is

Rx =


1 0 0 0
0 cos(θ) sin(θ) 0
0 − sin(θ) cos(θ) 0
0 0 0 1

 =


1 0 0 0
0
√

3/2 1/2 0
0 −1/2

√
3/2 0

0 0 0 1

 .

Dr Jon Shiach & Dr Killian O’Brien 36 Computer Graphics Lecture Notes

Back to Table of Contents Chapter 2. Translation, Rotation and Scaling Transformations

The rotations about the y and z axis and the translation are reversed so the complete composite
matrix is

A = T−1 ·R−1
z ·R−1

y ·Rx ·Ry ·Rz · T,

where

R−1
z =


2/
√

5 1/
√

5 0 0
−1/
√

5 2/
√

5 0 0
0 0 1 0
0 0 0 1

 , R−1
y =


√

5/
√

14 0 −3/
√

14 0
0 1 0 0

3/
√

14 0
√

5/
√

14 0
0 0 0 1

 , T =


1 0 0 10
0 1 0 5
0 0 1 50
0 0 0 1

 .

x

y

z

d

−p

(a) translate by −p

x

y

z

dy

dz

v

d

dx

(b) rotating around z axis

x

y

z

dz
d

v

(c) rotating around y axis

x

y

z

d

(d) rotating around x axis

Figure 2.13: The translations and rotations used in example 2.8.

Dr Jon Shiach & Dr Killian O’Brien 37 Computer Graphics Lecture Notes

Chapter 2. Translation, Rotation and Scaling Transformations Back to Table of Contents

2.5 Lab exercises
Use MATLAB to calculate the solutions to examples 2.1 to 2.9.

The solutions are given on page 81.

Dr Jon Shiach & Dr Killian O’Brien 38 Computer Graphics Lecture Notes

Chapter 3

Virtual Environments

3.1 The viewing pipeline
The steps required to construct a virtual environment and display it so it can be viewed by a computer
user are summarised in a flow diagram known as the viewing pipeline which is shown in fig. 3.1.

object space world space
camera
space screen space

clip space
hidden
surfaces
removed

rasterdisplay

copy and
transform
into world
space

align world
space to
camera

project
onto
screen
space

clip polygons to
edge of screen
space

hidden
surface
removal

lighting,
textures
and scan
conversion

send
raster to
display

camera position or direction changes

Figure 3.1: The viewing pipeline summarises the steps used to construct and display a virtual
environment.

The steps are as follows

• Object space – Primitive objects that are used to build your virtual environment are defined within
their own space such that the origin passes through the centre of the object (or sometimes the centre
of the bases of the object). For example, a virtual environment that describes a street scene may
have objects for buildings, cars, bus stops, street lights etc.

• World space – The virtual environment is constructed by copying the objects into the world space
and applying scaling, rotation and translation transformations.

• Camera space – To view the virtual environment we place a virtual camera in the world space and
use translation and rotation transformations so that the position of the camera is at the origin looking
along the z axis in the negative direction.

• Screen space – The camera space is projected onto a two-dimensional projection plane using per-
spective projection so that the further objects are from the camera the smaller they appear giving
the illusion of depth.

39

Chapter 3. Virtual Environments Back to Table of Contents

• Clipped screen space – Any objects in the screen space that are outside of the region that visible
to the camera are removed and objects that lie partially outside are ‘clipped’ to the edges.

• Hidden surfaces removed – Any face of an object that is facing away from the camera are removed
and a rendering order of the polygons is determined so that closer surfaces obstruct those further
away.

• Raster – The colours of the individual pixels on a display screen are determined from the information
obtained about the virtual environment up to this point and any lighting conditions used. This
information is stored in a raster array where each element corresponds to a pixel on the display.

• Display – The raster array is sent to the display hardware.

If the position and/or direction of the virtual camera used to calculate the camera space changes, e.g.,
through the actions of a player or a computer game, the steps from the camera space to the display are
repeated. This will typically be 30 or 60 times per second which highlights the computational demands
placed on computer hardware and the need for all calculations to be as efficient as possible.

These notes will focus on the steps from the object space to the hidden surface removal stage. The
remaining steps are outside the focus of this unit.

3.2 Defining objects

Each object in a virtual world is defined in its own space where the centre of mass of the object is at the
origin so that scaling, translation and rotation operations can be easily applied (fig. 3.2).

x

y

z

(a) house
x

y

z

(b) tower

Figure 3.2: Each object is defined in its own object space.

A three-dimensional object is constructed using polygons for the faces of the object where each face is
defined by its vertices. Since multiple faces of on object can share the same vertex we use one array to
list the vertex co-ordinates and another array to list the vertices that defines each face. Consider the cube
object in fig. 3.3, if the sides are parallel to the co-ordinate axes with side lengths 2 then the homogeneous
co-ordinates of the 8 vertices v1 to v8 are

v1 =


−1
−1
−1
1

 , v2 =


1
−1
−1
1

 , v3 =


1
1
−1
1

 , v4 =


−1
1
−1
1

 ,

v5 =


−1
−1
1
1

 , v6 =


1
−1
1
1

 , v7 =


1
1
1
1

 , v8 =


−1
1
1
1

 .

Dr Jon Shiach & Dr Killian O’Brien 40 Computer Graphics Lecture Notes

Back to Table of Contents Chapter 3. Virtual Environments

We can form a single matrix containing these vertices known as the vertex matrix

V =


...

v1 v2 v3 v4 v5 v6 v7 v8
...

 =


−1 1 1 −1 −1 1 1 −1
−1 −1 1 1 −1 −1 1 1
−1 −1 −1 −1 1 1 1 1
1 1 1 1 1 1 1 1

 .

v1 v2

v3v4

v5 v6

v7v8

Figure 3.3: Cube object

The faces of the object are defined by a face matrix that links to the vertex matrix. The face matrix is an
m× n matrix where m is the number of faces of the object and n is the number of sides for each face, so
for the cube object the face matrix will be 6× 4. The rows of the face matrix contain the column number
of the vertex matrix corresponding to vertices of that face. For example, consider the faces of the cube
object shown in fig. 3.4. The face that represents the base has vertices v1, v2, v3 and v4 so the row of
the face matrix will contain the numbers 1, 2, 3 and 4.

(a) base (b) front (c) right

(d) back (e) left (f) top

Figure 3.4: The faces of the cube object.

We also need to consider the order that the vertices are listed for each face. Objects are defined so that the
normal vectors for each face is pointing away from the centre of the object. We have seen in section 1.3.3
that the normal vector to a plane that passes through the 3 points with position vectors v1, v2 and v3 is
calculated using

n = (v2 − v1)× (v3 − v1).

If v1, v2 and v3 are ordered anti-clockwise when viewed from one side of the plane then the above equation
will result in a normal vector pointing towards the viewer. With this in mind the face matrix for the cube

Dr Jon Shiach & Dr Killian O’Brien 41 Computer Graphics Lecture Notes

Chapter 3. Virtual Environments Back to Table of Contents

object is

F =



base 1 4 3 2
front 1 2 6 5
right 2 3 7 6
back 3 4 8 7
left 4 1 5 8
right 5 6 7 8


Note that it does not matter which order the vertices are listing as columns in the world space vertex matrix
or the faces listed in rows of the face matrix, as long as the face matrix correctly links to the vertex matrix.

Example 3.1

A simple three-dimensional object that resembles a house is shown below (modelled on the house
piece from the Monopoly board game)

v3

v7

v10

v5

v1

v2

v6

v9
v4

v8

x

y

z

The house has length of 2, width of 1, wall height 1 and roof height 2 and defined so that the center
of the base is at the origin. Define the vertex and face matrices for this house object.

Solution:
The homogeneous co-ordinates of the vertices v1 to v10 are:

v1 =


−1

2
−1
0
1

 v2 =


1
2
−1
0
1

 v3 =


1
2
1
0
1

 v4 =


−1

2
1
0
1

 v5 =


−1

2
−1
1
1



v6 =


1
2
−1
1
1

 v7 =


1
2
1
1
1

 v8 =


−1

2
1
1
1

 v9 =


0
−1
2
1

 v10 =


0
1
2
1

 ,
so the vertex matrix is

Vhouse =


−1

2
1
2

1
2 −1

2 −1
2

1
2

1
2 −1

2 0 0
−1 −1 1 1 −1 −1 1 1 −1 1
0 0 0 0 1 1 1 1 2 2
1 1 1 1 1 1 1 1 1 1

 .
The house object has 7 faces: a base, 2 end walls, 2 side walls and 2 roofs. The base, side walls
and roofs are 4-sided faces whereas the end walls are 5-sided faces. The face matrix for the house
object that ensures the normal vectors are point away from the centre of the object is (vertices are
listed in an anti-clockwise direction when looking towards the centre). Note that the last vertex of
the 4-sided faces are repeated to ensure that each row of the face matrix has 5 elements.

Dr Jon Shiach & Dr Killian O’Brien 42 Computer Graphics Lecture Notes

Back to Table of Contents Chapter 3. Virtual Environments

v10 v8 v4 v3 v7 v10

v9 v5 v1 v2 v6 v9

v8 v7

v5 v6

v9

v10

baseroof side
wall

side
wall roof

end
wall

end
wall

Fhouse =



base 1 4 3 2 2
end wall 1 2 6 9 5
side wall 2 3 7 6 6
end wall 3 4 8 10 7
side wall 1 5 8 4 4
roof 6 7 10 9 9
roof 5 9 10 8 8



3.2.1 MATLAB code
The MATLAB code in listing 3.1 defines the vertex and face matrices for the house object from example 3.1
and plots the object space (fig. 3.5). The patch command can use the vertex and face matrices Vhouse
and Fhouse. Note that we only use the first three rows of Vhouse and the array has been transposed
because MATLAB assumes the co-ordinates are listed in rows. The FaceAlpha is set to zero so that the
faces of the object are transparent.

Listing 3.1: MATLAB code to define the house object from example 3.1 and plot the object
space.� �

% Define house object
Vhouse = [-1/2, 1/2, 1/2, -1/2, -1/2, 1/2, 1/2, -1/2, 0, 0 ;

-1, -1, 1, 1, -1, -1, 1, 1, -1, 1 ;
0, 0, 0, 0, 1, 1, 1, 1, 2, 2 ;
1, 1, 1, 1, 1, 1, 1, 1, 1, 1];

Fhouse = [1, 4, 3, 2, 2 ;
1, 2, 6, 9, 5 ;
2, 3, 7, 6, 6 ;
3, 4, 8, 10, 7 ;
1, 5, 8, 4, 4 ;
6, 7, 10, 9, 9 ;
5, 9, 10, 8, 8];

% Plot object space
patch(’Vertices ’, Vhouse (1:3 ,:) ’, ’Faces ’, Fhouse , ’FaceAlpha ’, 0)
axis ([-1, 1, -2, 2, 0, 2])
view (60, 30)
xlabel (’x’)
ylabel (’y’)
zlabel (’z’)� �

Dr Jon Shiach & Dr Killian O’Brien 43 Computer Graphics Lecture Notes

Chapter 3. Virtual Environments Back to Table of Contents

Figure 3.5: MATLAB plot of the house object from example 3.1.

3.3 Building a virtual environment
Once the vertex and face matrices for the objects have been define they can be used to build the virtual
environment. The objects are copied to the world space and transformed using scaling, rotation and
translation operations to construct the virtual world (fig. 3.6)

x

y

z

Figure 3.6: Objects copied and transformed into the world space create the virtual world.

The transformations applied to the objects is done in the order scaling→ rotation→ translation to preserve
the shape of the object. So the world space vertices of each object vertices are calculated using

Vobject = T ·Rz ·Ry ·Rx · S · V.

The object vertex co-ordinates are then appended to a vertex matrix containing all of the objects in the
virtual environment, i.e.,

Vworld =
[
Vobject 1 Vobject 2 Vobject 3 · · ·

]
.

So Vworld is a 4 × n matrix where n is the total number of vertices that define the virtual environment.
The face array for each object is also appended to the bottom of a face matrix containing all faces for the

Dr Jon Shiach & Dr Killian O’Brien 44 Computer Graphics Lecture Notes

Back to Table of Contents Chapter 3. Virtual Environments

objects that make up the virtual environment, i.e.,

Fworld =

Fobject 1Fobject 2
...

 .
So Fworld is an p × q matrix where p is the total number of faces in the virtual environment and q is the
maximum number of sides of the faces. Since Fworld links to Vworld then when adding a new face to Fworld
we need to add the number of columns currently in Vworld to Fobject.

Example 3.2

The virtual world shown in fig. 3.6 is constructed using 2 house objects from example 3.1 and a
cube object. The house objects are rotated by angle θ = π/2 about the z axis and translated so
that the centre of the bases have position vectors (3, 3.5, 0) and (3, 1.5, 0). The cube object has
side lengths 2 is scaled by a factor of 0.5 in the x and y directions and 1.5 in the z direction so that
it resembles a tower and translated so that the centre of the base is at (1.5, 1.5, 0). Determine the
vertex and face matrices for the world space.

Solution:
Since cos(π/2) = 0 and sin(π/2) = 1 then the rotation and translation matrices for the first house
object are

Rz =


0 1 0 0
−1 0 0 0
0 0 1 0
0 0 0 1

 , T =


1 0 0 3
0 1 0 1.5
0 0 1 0
0 0 0 1


Applying these transformations to Vhouse from example 3.1 gives

Vworld =


0 1 0 0
−1 0 0 0
0 0 1 0
0 0 0 1




1 0 0 3
0 1 0 3.5
0 0 1 0
0 0 0 1



−1

2
1
2

1
2 −1

2 −1
2

1
2

1
2 −1

2 0 0
−1 −1 1 1 −1 −1 1 1 −1 1
0 0 0 0 1 1 1 1 2 2
1 1 1 1 1 1 1 1 1 1



=


2 2 4 4 2 2 4 4 2 4
4 3 3 4 4 3 3 4 3.5 3.5
0 0 0 0 1 1 1 1 2 2
1 1 1 1 1 1 1 1 1 1

 ,
and since this is the first object added to the world space then Fworld = Fhouse. Doing similar for
the second house object gives the transformed object co-ordinates

T · S · Vhouse =


2 2 4 4 2 2 4 4 2 4
2 1 1 2 2 1 1 2 1.5 1.5
0 0 0 0 1 1 1 1 2 2
1 1 1 1 1 1 1 1 1 1

 ,
which are appended to the end of the world space vertex matrix

Vworld =


2 2 · · · 4 2 2 · · · 4
2 1 · · · 3.5 2 1 · · · 1.5
0 0 · · · 2 0 0 · · · 2

︸ ︷︷ ︸
first house object

1 1 · · · 1 ︸ ︷︷ ︸
second house object

1 1 · · · 1

 .

Since there were 10 columns in Vworld prior to appending the second house object then we need to

Dr Jon Shiach & Dr Killian O’Brien 45 Computer Graphics Lecture Notes

Chapter 3. Virtual Environments Back to Table of Contents

add 10 to Fhouse and append it to Fworld

Fworld =



1 4 3 2 2
1 2 6 9 5
...
5 9 10 8 8
11 14 13 12 12
11 12 16 19 15
...

15 19 20 18 18



 first house object

 second house object

The scaling and translation matrices for the cube (tower) object are

S =


0.5 0 0 0
0 0.5 0 0
0 0 1.5 0
0 0 0 1

 , T =


1 0 0 1.5
0 1 0 1.5
0 0 1 1.5
0 0 0 1

 ,
which gives the transformed vertex matrix

T · S · Vcube =


1 2 2 1 1 2 2 1
1 1 2 2 1 1 2 2
0 0 0 0 3 3 3 3
1 1 1 1 1 1 1 1

 .
Appending these to Vworld gives

Vworld =


2 2 · · · 4 1 2 · · · 1
2 1 · · · 1.5 1 1 · · · 2
0 0 · · · 2 0 0 · · · 3

︸ ︷︷ ︸
house objects

1 1 · · · 1 ︸ ︷︷ ︸
cube object

1 1 · · · 1

 .

There were 20 columns in Vworld prior to appending the cube object vertices so we need to add 20
to Fcube and append it to Fworld

1 4 3 2 2
1 2 6 9 5
...

15 19 20 18 18
21 24 23 22 22
21 22 26 25 25
...

25 26 27 28 28



 house objects

 cube object

After the 3 objects have been added to the world space the virtual world is described by 20 polygons
defined by 28 vertices.

Dr Jon Shiach & Dr Killian O’Brien 46 Computer Graphics Lecture Notes

Back to Table of Contents Chapter 3. Virtual Environments

Figure 3.7: A plot of the virtual environment containing the cube and house objects from
example 3.2.

3.4 Transforming to the camera space
The next step in the viewing pipeline (fig. 3.1) is to align the world space to the camera space. Imagine
you are viewing a virtual environment through a camera positioned in the world space at p and pointed
towards the point with position c known as the centre of view (fig. 3.8). We want to transform the world
space so that p is at the origin of a new space with axes x∗, y∗ and z∗ where, from our point of view, x∗
points to the right, y∗ points up and z∗ points towards us. The reason we want this new axes configuration
is so that the x and y co-ordinates match the horizontal and vertical axes of the display.

x

y

z
c

p

x∗

y∗

z∗

k u
v

w

Figure 3.8: The virtual world is transformed so that the viewer position p is the origin of a new
co-ordinate axes x∗, y∗ and z∗.

The first transformation is to translate the world space by −p so that the viewer is positioned at the origin.
The matrix that performs this translation is

T =


1 0 0 −px

0 1 0 −py

0 0 1 −pz

0 0 0 1

 .

Dr Jon Shiach & Dr Killian O’Brien 47 Computer Graphics Lecture Notes

Chapter 3. Virtual Environments Back to Table of Contents

Next we need to transform from the (x, y, z) axes to the (x∗, y∗, z∗) axes. Let {u,v,w} be a basis for the
new axes where u = (u1, u2, u3), v = (v1, v2, v3) and w = (w1, w2, w3) are unit vectors pointing in the
x∗, y∗ and z∗ directions respectively. The w vector is calculated using

w = p− c
|p− c| .

The u vector is perpendicular to the plane that w and k lie on so

u = k×w
|k×w| .

The v vector is perpendicular to the plane that u and w lie on so

v = w× u.

Note that the order of the vectors in the cross products when calculating u and v are important as the
cross product is not commutative. The change of basis matrix for going from the basis {i, j,k} to the new
basis {u,v,w} is

R =


u1 u2 u3 0
v1 v2 v2 0
w1 w2 w3 0
0 0 0 1

 .
Combining the translation and change of basis matrix gives

A = T ·R =


u1 u2 u3 0
v1 v2 v2 0
w1 w2 w3 0
0 0 0 1




1 0 0 −px

0 1 0 −py

0 0 1 −pz

0 0 0 1

 =


u1 u2 u3 −pxu1 − pyu2 − pzu3
v1 v2 v2 −pxv1 − pyv2 − pzv3
w1 w2 w3 −pxw1 − pyw2 − pzw3
0 0 0 1



=


u1 u2 u3 −p · u
v1 v2 v2 −p · v
w1 w2 w3 −p ·w
0 0 0 1

 .
A is the alignment transformation matrix that aligns the world space to the camera space. This is
applied to the world space vertex matrix to give the camera space vertex matrix, i.e.,

Vcamera = A · Vworld

Note that every time the view position changes or the centre of view changes the alignment transformation
matrix will need to be recalculated and applied to calculate the camera space vertices. In a computer game
this typically happens 30 or 60 times a second as the player is moving the camera. The player traversing a
virtual environment feels like they are moving through the world space, what actually happens is the player
remains are the origin looking down the z∗ axis and it is the world space that moves around them.

Example 3.3

The world space from example 3.2 is viewed from position p = (6, 5, 0.5) looking towards the centre
of view at c = (2, 2, 1). Calculate the camera space co-ordinates of the virtual environment.

Solution:
Calculate the basis {u,v,w} for the camera space

w = p− c
|p− c| = (4, 3,−0.5)√

42 + 32 + (−0.5)2 = (0.7960, 0.5970,−0.0995),

Dr Jon Shiach & Dr Killian O’Brien 48 Computer Graphics Lecture Notes

Back to Table of Contents Chapter 3. Virtual Environments

u = k×w
|k×w| =

det


 i j k

0 0 1
0.7960 0.5970 −0.0995




∣∣∣∣∣∣∣det


 i j k

0 0 1
0.7960 0.5970 −0.0995



∣∣∣∣∣∣∣

= (−0.6, 0.8, 0),

v = w× u = det


 i j k

0.7960 0.5970 −0.0995
−0.6 0.8 0


 = (0.0796, 0.0597, 0.9950).

So the change of basis matrix is

R =


−0.6 0.8 0 0

0.0796 0.0597 0.9950 0
0.7960 0.5970 −0.0995 0

0 0 0 1

 .
We can check that R is correct by multiplying it by the homogeneous form of p − c to see if it
points along the positive z∗ direction

R · (p− c) =


−0.6 0.8 0 0

0.0796 0.0597 0.9950 0
0.7960 0.5970 −0.0995 0

0 0 0 1




4
3
−0.5

1

 =


0
0

5.0249
1

 .
Since the x and y values are 0 and the z value is positive then R is correct. The alignment
transformation matrix is

A =


u1 u2 u3 −p · u
v1 v2 v2 −p · v
w1 w2 w3 −p ·w
0 0 0 1

 =


−0.6000 0.8000 0.0000 −0.4000
0.0796 0.0597 0.9950 −1.2736
0.7960 0.5970 −0.0995 −7.7115

0 0 0 1

 .
Applying the alignment transformation to the world space co-ordinates

Vcamera = A · Vworld =


−0.6000 0.8000 0.0000 −0.4000
0.0796 0.0597 0.9950 −1.2736
0.7960 0.5970 −0.0995 −7.7115

0 0 0 1




2 2 4 4 · · ·
4 3 3 4 · · ·
0 0 0 0 · · ·
1 1 1 1 · · ·



=


1.6000 0.8000 −0.4000 0.4000 · · ·
−0.8745 −0.9353 −0.7761 −0.7164 · · ·
−3.7314 −4.3284 −2.7364 −2.1393 · · ·

1 1 1 1 · · ·

 .
A plot of the camera space is shown in fig. 3.9.

Dr Jon Shiach & Dr Killian O’Brien 49 Computer Graphics Lecture Notes

Chapter 3. Virtual Environments Back to Table of Contents

Figure 3.9: A plot of the camera space from the point of view of the viewer looking along the
z axis.

3.5 Projecting onto the screen space
After aligning the world space to the viewer we need to transform the three-dimensional camera space
to a two-dimensional space that we can represent on a computer display. This is achieved by defining a
projection plane that is parallel to the x and y axes of the camera space (we have dropped the ∗ suffix
from the camera space co-ordinates from this point onwards) and positioned so that intersects with a
negative value on the z axes fig. 3.10.

3.5.1 Orthographic projection
The simplest kind of projection is the orthographic projection. This is where we simply ignore the z
co-ordinate of each point in the environment, and consider the positions of the points (or components of
vectors) in the plane to be given by their x and y coordinates (or components).

An orthographic projection can often be carried out directly without the need for any real processing by
simply neglecting the z co-ordinate of all the points. However to retain consistency with our previous
matrix representations we could carry out this projection with the use of the transformation matrix (again
using homogeneous coordinates) P given by

P =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 .
A point with a position given by the homogeneous camera space co-ordinates x = (x, y, z, 1) the ortho-
graphic screen space co-ordinates are calculated using

P · x =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1



x
y
z
1

 =


x
y
0
1


Dr Jon Shiach & Dr Killian O’Brien 50 Computer Graphics Lecture Notes

Back to Table of Contents Chapter 3. Virtual Environments

projection plane
xz

y

Figure 3.10: The camera space is projected onto a projection plane to give a two-dimensional
representation of the virtual world.

This projection is depicted in fig. 3.11. It can be seen there that if each point in the aligned space is joined
to its projection in the xy-plane this produces a collection of projectors. For orthographic projection these
lines are all parallel to the z axis and so intersect the xy-plane orthogonally (i.e. at a right angle).

projection plane

x

y

z

Figure 3.11: Orthographic projection.

3.5.2 Perspective projection

A major drawback of the orthographic projection is that we lose all the depth information and will not be
able to tell which object are closer than others. Perspective projection does retain depth information by
making objects further away from the viewpoint appear smaller in the projection than similar objects closer
to the viewpoint. Perspective projection emulates the way the human eye, or a camera, perceives objects.
Rays of light are reflected off of objects and travel in straight lines, converging on the eye, or lens, which
for these purposes can be thought of as a single point, the viewpoint. Examples of the use of perspective
projection can be found in art where artists such as Albrecht Durer have used it to improve the realism of
their work (fig. 3.12).

Dr Jon Shiach & Dr Killian O’Brien 51 Computer Graphics Lecture Notes

Chapter 3. Virtual Environments Back to Table of Contents

Figure 3.12: An engraving by German artist Albrecht Durer (1471 – 1528) showing himself using
perspective projection to draw a lute.

In perspective projection the viewpoint is often called the centre of projection, it is the point where all the
projectors meet. The projected image is formed on a projection plane, a plane parallel to the xy plane and
positioned at a distance f from the centre of projection (which after alignment is of course positioned at
the origin). The projection plane can be thought of as a glass pane held up between the eye and the scene
being viewed (fig. 3.13). A projector line from a point in the world space intersects the projection plane in
the projected point, and then goes through the centre of projection.

projection plane
x

y

z f

Figure 3.13: Perspective projection.

Consider the diagram shown in fig. 3.14 where the point with co-ordinates (x, y, z) is projected onto the
projection plane located at z = −f to give to the point with co-ordinates (x∗, y∗, z∗). The triangle with
sides x, y and r is similar to the triangle x∗, y∗ and r∗ so

x∗

f
= x

z
,

y∗

f
= y

z
,

which gives the projected co-ordinates

x∗ = fx

z
, y∗ = fy

z
.

Dr Jon Shiach & Dr Killian O’Brien 52 Computer Graphics Lecture Notes

Back to Table of Contents Chapter 3. Virtual Environments

x

y

z
f

x

y

r

x∗

y∗r∗

(x, y, z)

(x∗, y∗, f)

Figure 3.14: The perspective projection of the point with co-ordinates (x, y, z) on to the pro-
jection plane located at z = f .

Both x∗ and y∗ are divided by z/f so the homogeneous co-ordinates of the projected point is (x, y, z, z/f)
(remember that we divide by the fourth co-ordinates to convert to Cartesian co-ordinates). Therefore the
transformation matrix for perspective projection is

P =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/f 0

 .
The screen space co-ordinates of a point with the homogeneous camera space co-ordinates x = (x, y, z, 1)
are calculated using

P · x =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/f 0



x
y
z
1

 =


x
y
z
z/f


and dividing by the fourth co-ordinates gives (fx/z, fy/z, f, 1) which are the projected co-ordinates derived
above.

3.5.3 Viewing frustum
When we view a virtual world we will only be able to see objects that are located within a finite region
known as the viewing frustum. Consider the diagram shown in fig. 3.15. The camera space is projected
onto the near viewing plane and we view the virtual environment through the display screen which lies on
the near projection plane. If we place another plane parallel to the projection plane further away from the
origin then we have a volume which will contain the region of the camera space that should be visible to
us. The location of the far viewing plane depends upon the computing power available, the further away it
is the more of the camera space we will be able to see but this will of course require more computational
resources.

The viewing frustum shown in fig. 3.15 is an awkward shape to deal with when it comes to clipping objects
that lie partially outside so we transform it so that the viewing frustum is a cube with sides of lengths 2
parallel to the co-ordinate axes whilst still maintaining the perspective projection. Consider the diagram
shown in fig. 3.16(a). The camera space co-ordinates of the vertices of the screen on the near projection
plane are (l, b, near), (r, b, near), (r, t, near) and (l, t, near) where l, r, t and b denote left, right, top
and bottom edges respectively. The values of these co-ordinates are determined by the position of the near
viewing plane, the field of view angle fov which controls the horizontal peripheral vision of the viewer and
the width-to-height ratio of the screen.

Dr Jon Shiach & Dr Killian O’Brien 53 Computer Graphics Lecture Notes

Chapter 3. Virtual Environments Back to Table of Contents

near projection plane

far projection plane

screen

x

y

z

viewing frustum

Figure 3.15: The viewing frustum.

We want to transform the viewing frustum so that its sides are parallel to the co-ordinate axes as shown
in fig. 3.16(b). The co-ordinates of the left, right, top and bottom corners of the screen are transformed
so they are either −1 or +1.

x

y

z

(l, b, near)

(r, b, near)

(l, t, near)

(r, t, near)

fov
width

h
ei
g
h
t

(a) viewing frustum

x

y

z

(−1,−1, 1)

(1,−1, 1))

(1, 1, 1))

(−1, 1, 1)

(−1,−1,−1)

(1,−1,−1))

(1, 1,−1))

(−1, 1,−1)

(b) transformed viewing frustum

Figure 3.16: The viewing frustum is transformed so that its edges are parallel to the co-ordinate
axes.

The r co-ordinate is calculated using

r = |near| · tan
(
fov

2

)
,

and since the centre of the screen is on the z axis then l = −r. Note that the near co-ordinate is negative
so we use the absolute value to calculate r. The t co-ordinate is determined by the aspect ratio of the
screen, i.e.,

aspect = width

height
,

so

aspect = r − l
t− b

= r

t

∴ t = r

aspect
= r · height

width
,

Common aspect ratios are 4/3 (for old televisions and computer monitors), 16/9 (modern televisions) and
2.35/1 (cinema screens).

Dr Jon Shiach & Dr Killian O’Brien 54 Computer Graphics Lecture Notes

Back to Table of Contents Chapter 3. Virtual Environments

To transform the viewing frustum we need to transform the camera space so that the points within the
viewing frustum have x∗, y∗ and z∗ co-ordinates in the range −1 ≤ x∗, y∗, z∗ ≤ 1 and projected using
perspective projection. The x camera space co-ordinate for a point that is on the near projection plane
and within our screen will be in the range l ≤ x ≤ r. Since l = −r and dividing throughout by r we have

−1 ≤ x

r
≤ 1,

and using perspective projection x∗ = x/near then

−1 ≤ near · x
rz

≤ 1,

so
x∗ = near · x

rz
.

Doing similar for y∗ gives

y∗ = near · y
tz

.

Now x∗ and y∗ are perspective screen space co-ordinates that are in the range −1 ≤ x∗, y∗ ≤ 1. The
matrix that performs this transformation is

P =


near/r 0 0 0

0 near/t 0 0
0 0 a b
0 0 1 0

 ,
where a and b are some scalars. A point with the homogeneous camera space co-ordinates x = (x, y, z, 1)
the screen space co-ordinates are calculated using

P · x =


near/r 0 0 0

0 near/t 0 0
0 0 a b
0 0 1 0



x
y
z
1

 =


near · x/r
near · y/t
az + b
z

 ,
and dividing by the fourth co-ordinate to convert to Cartesian co-ordinates we have

near · x/(rz)
near · y/(tz)
(az + b)/z

1

 .
The z camera space co-ordinate for a point within the viewing frustum is in the range near ≤ z ≤ far so
we need to transform near 7→ 1 and far 7→ −1. So the minimum and maximum z∗ co-ordinates are

1 = a · near + b

near
,

−1 = a · far + b

far
.

Solving for a and b gives a = (near + far)/(near − far) and b = −2 · near · far/(near − far) so the
transformation matrix becomes

P =


near/r 0 0 0

0 near/t 0 0
0 0 (near + far)/(near − far) −2 · near · far/(near − far)
0 0 1 0

 .
The transformation matrix P combines perspective projection and transformation of the viewing frustum
to a cube. The screen space co-ordinates are calculated using

Vscreen = P · Vcamera.

Each column in Vscreen is a homogeneous screen space co-ordinate where the fourth row contains the scaling
factor. The Cartesian co-ordinates are calculated by dividing Vscreen by the fourth row.

Dr Jon Shiach & Dr Killian O’Brien 55 Computer Graphics Lecture Notes

Chapter 3. Virtual Environments Back to Table of Contents

Example 3.4

The camera space from example 3.3 is projected onto the screen space defined by near and far
projection plans located at znear = −2 and zfar = −10, a field of view angle of fov = 1 and a
screen aspect ratio of aspect = 4/3. Calculate the screen space co-ordinates of the virtual world.

Solution:
Calculate the r and t co-ordinates

r = |near| · tan
(
fov

2

)
= 2 tan(0.5) = 1.0926,

t = r · height
width

= 1.0926(3)
4 = 0.8195,

so the projection matrix is

P =


near/r 0 0 0

0 near/t 0 0
0 0 (near + far)/(near − far) −2 · near · far/(near − far)
0 0 1 0



=


−2/1.0926 0 0 0

0 −2/0.8195 0 0
0 0 (−2− 10)/(−2 + 10) −2(−2)(−10)/(−2 + 10)
0 0 1 0



=


−1.8305 0 0 0

0 −2.4407 0 0
0 0 −1.5 5
0 0 1 0

 .
Applying the perspective transformation matrix to the camera space co-ordinates from example 3.3

Vscreen = P · Vview

=


−1.8305 0 0 0

0 −2.4407 0 0
0 0 −1.5 5
0 0 1 0




1.6000 0.8000 −0.4000 0.4000 · · ·
−0.8745 −0.9353 −0.7761 −0.7164 · · ·
−3.7314 −4.3284 −2.7364 −2.1393 · · ·

1 1 1 1 · · ·



=


−2.9288 −1.4644 0.7322 −0.7322 · · ·
2.1371 2.2828 1.8943 1.7485 · · ·
0.5971 1.4926 −0.8955 −1.7910 · · ·
−3.7314 −4.3284 −2.7364 −2.1393 · · ·

 .
Dividing Vscreen by the fourth row to give the Cartesian screen space co-ordinates

Vscreen =


0.7849 0.3383 −0.2676 0.3423 · · ·
−0.5727 −0.5274 −0.6923 −0.8173 · · ·
−0.1600 −0.3448 0.3273 0.8372 · · ·

1 1 1 1 · · ·


A plot of the screen space is shown in fig. 3.17.

Dr Jon Shiach & Dr Killian O’Brien 56 Computer Graphics Lecture Notes

Back to Table of Contents Chapter 3. Virtual Environments

Figure 3.17: A plot of the screen space from the point of view of the viewer looking along the
z axis.

Dr Jon Shiach & Dr Killian O’Brien 57 Computer Graphics Lecture Notes

Chapter 3. Virtual Environments Back to Table of Contents

3.6 Lab exercises
Use MATLAB to calculate the solutions to examples 3.1 to 3.4 and reproduce the plots shown in figs. 3.5,
3.7, 3.9 and 3.17.

The solutions are given on page 84.

Dr Jon Shiach & Dr Killian O’Brien 58 Computer Graphics Lecture Notes

Chapter 4

Clipping and Hidden Surface Removal

4.1 Clipping
We saw in fig. 3.17 on page 57 that after the camera space has been projected onto the screen space some
polygons that construct the virtual world may lie wholly or partially outside of the screen space defined by
−1 < x, y, z < 1. The next step in the viewing pipeline (fig. 3.1 on page 39) is to remove any polygons
that are wholly outside of the screen space and to cut polygons that intersected by the planes that define
the boundaries of the screen space. This process is known as clipping.

The screen space is bounded by a unit cube with vertices (±1,±1,±1) as shown in fig. 3.16(b) so there
are 6 planes that need to be considered. A plane is defined by a normal vector n and the position p of a
point which lies on the plane. The normal vectors for the edges of the screen space are assumed to point
towards the interior of the screen space so

nbottom =

0
1
0

 , nfront =

 0
0
−1

 , nright =

−1
0
0

 ,
nback =

0
0
1

 , nleft =

1
0
0

 , ntop =

 0
−1
0

 ,
where the edges labelled bottom, front, right, back, left and top are from the point of view of the viewer
looking down the negative direction of the z axis. The position vector p for the edges of the screen space
can be any point on the plane so for simplicity we can use

pbottom =

 0
−1
0

 , pfront =

0
0
1

 , pright =

1
0
0

 ,
pback =

 0
0
−1

 , pleft =

−1
0
0

 , ptop =

0
1
0

 ,
For each edge of the screen space we consider each polygon of the virtual world as defined by the world space
face matrix, Fworld, and apply an algorithm called the Sutherland-Hodgman algorithm. The algorithm
works by considering each edge of the polygon joining sequential vertices vi → vi+1. If vi is in front of the
screen edge (i.e., it is in the space which the polygon normal vector points towards) then vi is added to a
list of the vertices in the clipped polygon and if vi+1 is behind the edge then the line vi → vi+1 intersects
the screen edge so the co-ordinates of the intersection point are calculated and added to the clip polygon
list. If however vi is behind the screen edge and vi+1 is in front then the line vi → vi+1 intersects the
screen edge so the co-ordinates of the intersection point are calculated and added to the clip polygon list.

59

Chapter 4. Clipping and Hidden Surface Removal Back to Table of Contents

If not then both vi and vi+1 are behind the screen edge so are removed from the polygon. This algorithm
is presented in algorithm 1.

Algorithm 1 Sutherland-Hodgman algorithm
Initialise Vclip ← Vscreen, Fclip ← Vworld and n← number of vertices in Vclip
for each edge of the screen space do

for each polygon in Fclip do
Clear list
for each polygon edge vi → vi+1 do

if vi is in front of the screen edge then
Add i to list
if vi+1 is behind the screen edge then

Calculate the intersection point vn+1 and append to Vclip
Update n← n+ 1 and add to list

end if
else if vj+1 is in front of the screen edge then

Calculate the intersection point vn+1 and append to Vclip
Update n← n+ 1 and add to list

end if
end for
Replace the appropriate row of Fclip with list

end for
end for

For the Sutherland-Hodgman algorithm we need to be able to determine whether a point is in front or
behind the plane which forms the edges of the screen space. To do this we can use eq. (1.15) on page 19
to calculate the distance between a point and a plane and if this distance is positive then the point is in
front of the plane and if it is negative the point is behind the plane. This calculation is made easy since we
have transformed the screen space so that it is a unit cube and we just need to compare the co-ordinates
to ±1.

4.1.1 Calculating the intersection between a line and a plane

We also need to be able to calculate the co-ordinates of the intersection point between a line and plane.
Consider the diagram in fig. 4.1 which shows a straight line between the two endpoints with positions a
and b which intersects a plane passing through the point p with normal vector n. The point at which the
line intersects with the plane is at position c.

a

b
c

p

n

Figure 4.1: Intersection between a line and a plane.

Dr Jon Shiach & Dr Killian O’Brien 60 Computer Graphics Lecture Notes

Back to Table of Contents Chapter 4. Clipping and Hidden Surface Removal

Since c lies on the line then it must satisfy the vector equation of a line

c = a + t(b− a), (4.1)

where 0 ≤ t ≤ 1. Since c also lies on the plane then the vector c− p and n are perpendicular so

(c− p) · n = 0, (4.2)

Substituting eq. (4.1) into eq. (4.2) and solving for t

(a + t(b− a)− p) · n = 0
(a − p) · n + t(b− a) · n = 0

∴ t = (a − p) · n
(b− a) · n .

Note that this equation for t is only valid when (b− a) · n 6= 0. If (b− a) · n = 0 then the line is parallel
to the plane and the never intersects the plane. Once the value of t has been determined the point that
the line intersects with the plane is calculated using eq. (4.1).

Example 4.1

Apply the Sutherland-Hodgman polygon clipping algorithm to the fourth polygon in the screen space
in example 3.4 where Fclip and Vclip are

Fclip =



1 1 4 3 2 2
...

4 3 4 8 10 7
...

20 25 26 27 28 28


,

Vclip =


v3 v4 v7 v8 v10

· · · −0.2676 0.3423 · · · −0.2582 0.3270 · · · 0.0000 · · ·
· · · −0.6923 −0.8173 · · · 0.1884 0.3037 · · · 1.1513 · · ·
· · · 0.3273 0.8372 · · · 0.2631 0.7333 · · · 0.3962 · · ·
· · · 1 1 · · · 1 1 · · · 1 · · ·

.

Solution:
We begin by initialising the clip space vertex and face matrices Vclip = Vscreen and Fclip = Fworld.
By inspection all of the x and z co-ordinates are between −1 and 1 but one of the y co-ordinates is
greater than 1 so we need to clip to the top edge of the screen. The first 3 vertices for this polygon
are v3, v4 and v8 which all have y co-ordinates less that 1 so are in front and added to the list of
the clipped polygon

list =
[
3 4 8

]
.

The next vertex of the polygon is v10 which has y co-ordinate y = 1.1513 > 1 so is behind the top
edge of the screen and we need to calculate the intersection point between the line v8 → v10 and
the top edge of the screen space. Calculating the new intersection point v29 (since there currently

Dr Jon Shiach & Dr Killian O’Brien 61 Computer Graphics Lecture Notes

Chapter 4. Clipping and Hidden Surface Removal Back to Table of Contents

28 vertices in Vclip)

t = (v8 − ptop) · ntop
(v8 − v10) · ntop

=


0.3270

0.3037
0.7333

−
0

1
0


 ·

 0
−1
0



0.3270

0.3037
0.7333

−
0.0000

1.1513
0.3962


 ·

 0
−1
0


= 0.6963

0.8476 = 0.8215,

v29 = v8 + t(v10 − v8) =

0.3270
0.3037
0.7333

+ 0.8215


0.0000

1.1513
0.3962

−
0.3270

0.3037
0.7333


 =

0.0584
1

0.4564

 .
The new vertex v29 is appended to the end of Vclip and added to the face list

list =
[
3 4 8 29

]
.

The next vertex in the polygon is v7. We know that v10 is behind the top edge and v7 is in front
so we need to calculate the intersection point v30 between the line v10 → v7 and the top edge of
the screen space.

t = (v10 − ptop) · ntop
(v10 − v7) · ntop

=


0.0000

1.1513
0.3962

−
0

1
0


 ·

 0
−1
0



0.0000

1.1513
0.3962

−
−0.2582

0.1884
0.2631


 ·

 0
−1
0


= −0.1513
−0.9629 = 0.1571,

v30 = v10 + t(v7 − v10) =

0.0000
1.1513
0.3962

+ 0.1571


−0.2582

0.1884
0.2631

−
0.0000

1.1513
0.3962


 =

−0.1011
1

0.3753

 .
The new vertex v30 is appended to the end of Vclip and added to the face list

list =
[
3 4 9 29 30

]
.

v7 is in front and added to the face list. The final face list is

list =
[
3 4 8 29 30 7

]
,

which replaces the fourth row in Fclip. By clipping this polygon to the top edge we now have a 6
sided polygon, so we need to extend Fclip so that it has 6 columns.

Fclip =



1 1 4 3 2 2 2
...

4 3 4 8 29 30 7
...

20 25 26 27 28 28 28


,

Vclip =


v3 v4 v7 v8 v10 v29 v30

· · · −0.2676 0.3423 · · · −0.2582 0.3270 · · · 0.0000 · · · 0.0584 −0.1011
· · · −0.6923 −0.8173 · · · 0.1884 0.3037 · · · 1.1513 · · · 1.0000 1.0000
· · · 0.3273 0.8372 · · · 0.2631 0.7333 · · · 0.3962 · · · 0.4564 0.3753
· · · 1 1 · · · 1 1 · · · 1 · · · 1 1

.

Dr Jon Shiach & Dr Killian O’Brien 62 Computer Graphics Lecture Notes

Back to Table of Contents Chapter 4. Clipping and Hidden Surface Removal

We do similar for all other polygons in Fclip. This means that the number of vertices in the clip
space vertex matrix may increase and the number of polygons in the clip space face matrix may
decrease as polygons that are wholly behind the edge of the screen space are discarded. A plot of
the clip space is shown in fig. 4.2.

Figure 4.2: A plot of the clip space.

4.2 Hidden surface removal
The next step in the viewing pipeline (fig. 3.1 on page 39) is to remove those polygons and parts of
polygons that should not be visible to the viewer. The polygons in the plot of the clip space in fig. 4.2 are
transparent so better show the virtual environment, if they were opaque the tower object would be mostly
obscured by the house object that is closer to the viewer. We will look at three hidden surface removal
techniques: back-face culling, painter’s algorithm and binary space partitioning.

4.2.1 Back-face culling
The first hidden surface technique that is applied is back-face culling which as the name suggests, culls
all polygons that are considered back-facing from the point of view of the camera from the screen space.
In computer graphics, the normal vector for a polygon is considered unique so that we can distinguish
between the two sides of the polygon (see section 1.3.3). The side of the polygon which the normal vector
is pointing is known as the front face of the polygon and the side facing away from the normal vector is
known as the back face.

Consider fig. 4.3 where a hexagonal object is defined by 6 polygons A to F . When viewed from the position
on the left, polygons C, D and E are front facing and polygons A, B and F are back facing. Assuming
that all polygons are opaque, removing (or culling) the back facing polygons from the object does not
change the appearance of the object to the viewer.

To determine whether a polygon is front or back facing we use the normal vector for the polygon and a
viewing vector which is a vector pointing from the viewer to a point on the polygon. Consider the diagram

Dr Jon Shiach & Dr Killian O’Brien 63 Computer Graphics Lecture Notes

Chapter 4. Clipping and Hidden Surface Removal Back to Table of Contents

A

BC

D

E F

nA

nBnC

nD

nE nF

(a) all faces

C

D

E

nC

nD

nE

(b) back-faces culled

Figure 4.3: Culling the back facing polygons does not change the appearance of the object to
the viewer.

v

n

n

θ

(a) font facing polygon

v

n

n

θ

(b) back facing polygon

Figure 4.4: Front and back facing polygons

shown in fig. 4.4(a) that shows a front facing polygon. The angle, θ, between the viewing vector v and
the polygon normal vector n is greater than π/2 whereas this angle for a back facing polygon shown in
fig. 4.4(b) is less than π/2. Recall the geometric definition of the dot product

n · v = |n||v| cos(θ),

when θ < π/2, cos(θ) > 0 and when θ < π/2, cos(θ) < 0, therefore a polygon is front facing if

n · v < 0.

If we consider that the viewer is positioned on the z axis at (0, 0, 1) and looking in the negative z direction
then any polygon in the clip space with a normal vector n = (nx, ny, nz) where nz > 0 is front facing.

Algorithm 2 Back-face culling
for every polygon in Fclip do

calculate the normal vector n = (nx, ny, nz)
if nz > 0 then

Add polygon to FFront
end if

end for

Example 4.2

Apply the back-face culling to the clip space from example 4.1 where the clip space vertex and face

Dr Jon Shiach & Dr Killian O’Brien 64 Computer Graphics Lecture Notes

Back to Table of Contents Chapter 4. Clipping and Hidden Surface Removal

matrices are

Vclip =


0.7849 0.3383 −0.2676 0.3423 · · ·
−0.5727 −0.5274 −0.6923 −0.8173 · · ·
−0.1600 −0.3448 0.3273 0.8372 · · ·
1.0000 1.0000 1.0000 1.0000 · · ·

 ,

Fclip =


1 4 3 2 2 2
1 2 6 9 5 5
2 3 7 6 6 6
3 4 8 29 30 7
...


Solution:
Calculating the normal vector for the first polygon

n = (v4 − v1)× (v3 − v4)

=


 0.3423
−0.8173
0.8372

−
 0.7849
−0.5727
−0.1600


×


−0.2676
−0.6923
0.3273

−
 0.3432
−0.8173
0.8372




=

∣∣∣∣∣∣∣
i j k

−0.4426 −0.2446 0.9972
−0.6098 0.1251 −0.5099

∣∣∣∣∣∣∣ =

 0.0000
−0.8338
−0.2045

 .
Since nz = −0.2045 < 0 then this polygon is back facing and not added to Ffront. This is repeated
for the other polygons in the clip space and a plot of the front facing polygons is shown in fig. 4.5.

Figure 4.5: The clip space after back facing polygons have been removed (plotted using opaque
polygons).

Dr Jon Shiach & Dr Killian O’Brien 65 Computer Graphics Lecture Notes

Chapter 4. Clipping and Hidden Surface Removal Back to Table of Contents

4.3 Painter’s algorithm
We have seen in fig. 4.5 that simply culling the back facing polygons from the clip space does not result
in a realistic view of the virtual world. This is because the polygons plotted first are obscured by those
plotted afterwards. To overcome this we need to sort the polygons by order the distance from the viewer
so the polygons further away are plotted first and the polygons closest to the viewer are plotted last. This
method has been given the name the painter’s algorithm because an oil painter painting a scene needs to
begin with the background elements before painting the middle ground and foreground elements fig. 4.6.

Figure 4.6: An oil painter painting a scene need to paint background elements first and foreground
elements last.

Since the clip space is viewed from the position at (0, 0, 1) looking in the negative z axis direction the
polygons furthest away will have vertices with z co-ordinates close to −1 and those polygons that are
closest to the viewer will have z values close to 1. Therefore we sort the polygons in ascending order of
their z co-ordinates and plot the polygons in that order. Since polygons have multiple vertices with possibly
different z co-ordinates we assume the polygon has a distance which is that of the vertex with the largest
z co-ordinate.

Algorithm 3 Painter’s algorithm
for each polygon i in Ffront do

zi ← −2
for each vertex v = (vx, vy, vz) in the polygon do

zi ← max(zi, vz)
end for

end for
Plot polygons in ascending order of z value

The result of the painters algorithm when applied to the clip space from example 4.2 is shown in fig. 4.7.
Here the hidden surfaces have been removed and we have a realistic view of the virtual world.

Dr Jon Shiach & Dr Killian O’Brien 66 Computer Graphics Lecture Notes

Back to Table of Contents Chapter 4. Clipping and Hidden Surface Removal

Figure 4.7: A plot of the clip space with back facing polygons culled and sorted in ascending
order by their z co-ordinates.

4.4 Binary space partitioning

The disadvantage of the painter’s algorithm is that every time the camera position or direction changes the
z distances need to be recalculated. A method used in computer games that provides the correct rendering
order for static polygons in a virtual environment is called Binary Space Partitioning (BSP). BSP was first
described in the 1960s by Schumaker et al. (1969) to improve the rendering of three-dimensional scenes
using computer graphics. However, it wasn’t until the early 1990s that BSP became widely used in the
computer game industry to improve the performance of rendering three-dimensional scenes. id Software’s
seminal game Doom (Carmack and Romero 1993) was the first game to use this method and all games
with three-dimensional virtual worlds have since have used BSP.

Definition 4.1

A convex set is a set of polygons where every polygon is facing every other polygon. A polygon A
is said to be facing another polygon B if the surface normal vector is pointing towards B.

Consider the two spaces in fig. 4.9. The set of polygons on the left is a convex set since every polygon in
the set has its normal vector pointing to every other polygon in the set. The set of polygons on the right
is not a convex set since one of the polygons has its normal vector pointing away from the other polygons
in the set.

Dr Jon Shiach & Dr Killian O’Brien 67 Computer Graphics Lecture Notes

Chapter 4. Clipping and Hidden Surface Removal Back to Table of Contents

Figure 4.8: A screenshot from the game Doom (Carmack and Romero 1993) which was the first
game to use binary space partitioning.

(a) convex set (b) non-convex set

Figure 4.9: The difference between a convex and non-convex set.

Definition 4.2

A hyperplane in n-dimensional space is an (n − 1)-dimensional object that is used to bisect the
space to form two new subspaces.

Dr Jon Shiach & Dr Killian O’Brien 68 Computer Graphics Lecture Notes

Back to Table of Contents Chapter 4. Clipping and Hidden Surface Removal

hyperplane

subspaces

Figure 4.10: A hyperplane divides a space into two subspaces.

Definition 4.3

An atomic subspace is a subspace where all polygons contained within the subspace form a convex
set.

The aim of binary space partitioning is to divide the world space into atomic subspaces by inserting
hyperplanes along polygons. By definition, the polygons that form each atomic subspace do not obscure
each other so can be rendered at the same time. The order that each atomic subspace is rendered is
calculated to ensure that hidden surfaces are removed in a similar way to the painters algorithm.

Binary space partitioning is primarily used in the rendering of static polygons in the world space. For exam-
ple, consider a computer game that requires the player to navigate a three-dimensional virtual environment.
The polygons that construct the walls, floors, buildings etc. are known prior to the player navigating the
map and remain fixed in place. So we can perform binary space partitioning before the scene needs to be
rendered in order to save computational effort whilst the game is being played.

4.4.1 BSP trees

When using binary space partitioning we need to record each subdivision and the polygons that are contained
within each subspace. To this a data structure known as a binary tree is used. A binary tree consists of
nodes that are joined by edges where each node has a single input edge and at most two output edges
(fig. 4.11). The node attached to the other end of the input edge is called the parent node and the node
attached to the other end of the output edges are called child nodes. For example in fig. 4.11, A is the
root node with two child nodes B and C. B is the parent of nodes D and E and C is the parent of nodes
F and G. Nodes D, E, F and G have no child nodes so are therefore leaf nodes.

A

B

D E

C

F G

Figure 4.11: A simple binary tree

Dr Jon Shiach & Dr Killian O’Brien 69 Computer Graphics Lecture Notes

Chapter 4. Clipping and Hidden Surface Removal Back to Table of Contents

Consider the space containing the three polygons A, B and C in fig. 4.12. The set {A,B,C} is not an
atomic subspace since none of the three polygons face each other. If we subdivide the space by inserting
a polygon on the same plane that polygon A lies on then, since the normal vector for polygon A points to
the right, polygon B is in the front subspace and polygon C is in the back subspace. We represent this
subdivision as a binary tree with polygon A contained in the root node, polygon B contained in the left
child node and polygon C contained within the right child node fig. 4.12. The choice of which node to
insert the hyperplane along is arbitrary and we can select any polygon in the set, however, there may be
optimality considerations.

A
C

B

A

B C

Figure 4.12: Polygons in the front subspace are listed in the left child node and polygons in the
back subspace are listed in the right child node in a BSP tree.

Definition 4.4: Coincident polygons

If two or more polygons exist on the same plane and they are facing in the same direction then they
are said to be coincident.

Coincident polygons can be treated as one polygon in the BSP process. It is advantageous to use coincident
polygons as the ones which a hyperplane is inserted since it reduces the number of polygons we have to
deal with. For example, consider fig. 4.13 where polygons A and B are coincident. Polygon C is in the
front subspace and polygon D is in the back subspace.

A B

C

D

A, B

C D

Figure 4.13: Coincident polygons are group into one node in the BSP tree.

This procedure continues until all subspaces contain convex sets, i.e., all subspaces are atomic subspaces.
The algorithm for the generation of a BSP tree is given below. Note that this is a recursive algorithm
where the function calls itself.

Dr Jon Shiach & Dr Killian O’Brien 70 Computer Graphics Lecture Notes

Back to Table of Contents Chapter 4. Clipping and Hidden Surface Removal

Algorithm 4 BSP-tree generating algorithm
function BSPtree(node)

if node is a convex set then
Exit function.

else
Choose a polygon from node (or coincident polygons) to be the root node.
Split any polygons that are intersected by the hyperplane of the root node.
List all of the polygons in the front subspace of the plane of the root node in the left child node.
List all of the polygons in the back subspace of the root node in the right child node.
Invoke BSPtree(left child node).
Invoke BSPtree(right child node).

end if
end function

Example 4.3

The diagram below shows a plan view of a virtual environment constructed using polygons labelled
A to T with normal vectors pointing towards the interior. Construct a BSP tree for this virtual
environment.

A

B C

D

E F

G

H

I

J

K

L

M

N

O

P
Q

R

ST

Solution:
Let’s choose the polygon R as the root node (note this is not a good choice to insert the
hyperplane since it creates splits in the polygons, however, this is deliberate to show how splittings
are dealt with). The hyperplane along polygon R splits polygons A and G so we label the split
polygons as A1, A2, G1 and G2. Polygons {A1, B, C,D,E, F,G1} are in the front subspace of
R (since its normal vector is pointing upwards) so are listed in the left child node and polygons
{A1, G2, H, I, J,K,L,M,N,O, P,Q, S, T} are in the back subspace of T and are listed in the
right child node.

A1

A2

B C

D

E F
G1

G2H

I

J

K

L

M

N

O

P
Q

R

ST

(1) R

A2, B,C,D,E,
F,G1

A1, G2, H, I, J,
K,L,M,N,O,
P,Q, S, T

Neither child nodes contain convex sets so we need to subdivide each one. Focussing on the left

Dr Jon Shiach & Dr Killian O’Brien 71 Computer Graphics Lecture Notes

Chapter 4. Clipping and Hidden Surface Removal Back to Table of Contents

child node let’s choose polygon C for our next node. Note that the hyperplane that is inserted along
C extends only as for as the hyperplane along R. Polygons {A2, B} are in the front subspace of C
so are listed in the left child node and polygons {D,E, F,G1} are in the back subspace of C and
are listed in the right child node.

A1

A2

B C

D

E F
G1

G2H

I

J

K

L

M

N

O

P
Q

R

ST

(1)

(2)

R

C

A2, B D,E, F,G1

A1, G2, H, I, J,
K,L,M,N,O,
P,Q, S, T,

{A2, B} is a convex set so does not need to be split any further. {D,E, F,G1} is not a convex set
so needs dividing further. Let’s choose polygon E for the next node. Polygons {F,G1} are in the
front subspace of E so are listed in the left child node and polygon D is in the back subspace of E
and is listed in the right child node. The BSP tree is now

A1

A2

B C

D

E F
G1

G2H

I

J

K

L

M

N

O

P
Q

R

ST

(1)

(2) (3)

R

C

A2, B E

F,G1 D

A1, G2, H, I, J,
K,L,M,N,O,
P,Q, S, T,

Both child nodes of E contain convex sets so do not require further division. Moving our focus
to the right child node of R let’s choose coincident polygons {M,Q} for the next node. Polygons
{H, I, J,K,L,N,O, P} are in the front subspace of {M,Q} so are listed in the left child node and
polygons {A1, S, T} are in the back subspace of {M,Q} so are listed in the right child node.

A1

A2

B C

D

E F
G1

G2H

I

J

K

L

M

N

O

P
Q

R

ST

(1)

(2) (3)

(4)

R

C

A2, B E

F,G1 D

M,Q

G2, H, I, J,K,
L,M,N,O, P

A1, S, T

{A1, S, T} is a convex set so does not need further subdivision but {G2, H, I, J,K,L,N,O, P} is
not a convex set so needs further subdivision. Let’s choose coincident polygons {J,N} for the next

Dr Jon Shiach & Dr Killian O’Brien 72 Computer Graphics Lecture Notes

Back to Table of Contents Chapter 4. Clipping and Hidden Surface Removal

node. Polygons {K,L} are in the front subspace of {J,N} so are listed in the left child node and
polygons {G2, H, I,O, P} are in the back subspace of {J,N} so are listed in the right child node.

A1

A2

B C

D

E F
G1

G2H

I

J

K

L

M

N

O

P
Q

R

ST

(1)

(2) (3)

(4)

(5)

R

C

A2, B E

F,G1 D

M,Q

J,N

K,L G2, H, I,
O, P

A1, S, T

{K,L} is a convex set so does not need further subdivision but {G2, H, I,O, P} is not a convex set
so need further subdivision. Let’s choose coincident polygons {H,P} for the next node. Polygon
G2 is in the front subspace so is listed in the left child node and polygons {I,O} are in the back
subspace so are listed in the right child node.

A1

A2

B C

D

E F
G1

G2H

I

J

K

L

M

N

O

P
Q

R

ST

(1)

(2) (3)

(4)

(5)

(6)

R

C

A2, B E

F,G1 D

M,Q

J,N

K,L H,P

G2 I,O

A1, S, T

4.4.2 Visibility ordering using BSP trees

So far we can construct a BSP tree by performing subdivision of a space and splitting the polygons where
necessary and optimise it using various criteria. You might be forgiven in thinking how does BSP help
when rendering three-dimensional scenes? If you consider what is actually happening with a BSP tree, we
are determining which polygons are in front of the others. Therefore BSP trees lend themselves well to a
technique similar to the painter’s algorithm where we render the furthest polygons from the camera before
the nearer ones. The problem with the painter’s algorithm is that every time the camera position changes,
the distances of each polygon have to be recalculated. Therefore this is not a suitable method to use in
computer games where the camera position is commonly controlled by the player and changing often. BSP
trees provide the visibility ordering for a scene depending on the camera position relative to the root node
of the tree.

Consider the scene and the associated BSP tree shown in fig. 4.14 which is viewed from the viewpoint at
p. p is in the front subspace of the root node A so the polygons that are in the back subspace of A,
in this case this is just polygon C, are further away from p than the polygons in the front subspace of
A, which in this case is just polygon B. So the rendering order used by the painter’s algorithm can be
determined by drawing polygons in the opposite subspace to the viewing position first. Notice that polygon
C is contained in the left sub-tree of A and polygon B is contained in the right sub-tree. So the rendering

Dr Jon Shiach & Dr Killian O’Brien 73 Computer Graphics Lecture Notes

Chapter 4. Clipping and Hidden Surface Removal Back to Table of Contents

order of polygons using the painter’s algorithm can be determined using a BSP tree.

A
C

B

p

A

B C

Figure 4.14: The world space is viewed from the viewpoint at p.

The visibility ordering of polygons in a BSP tree are determined using an in-order tree walk presented in
algorithm 5.

Algorithm 5 BSP-tree traversal
function BSPTreeTraversial(node)

if node is a leaf node then
Draw the polygons in node

else if viewing position is in the front subspace of node then
BSPtreetraversial(right child node)
Draw the polygons in node
BSPtreetraversial(left child node)

else if viewing position is in the back subspace of node then
BSPtreetraversial(left child node)
Draw the polygons in node
BSPtreetraversial(right child node)

end if
end function

The advantage of using BSP trees is that once a tree has been generated for a virtual world it can be used
to determine the rendering order for any position of the viewpoint.

Example 4.4

Using the BSP tree given below, determine the order that the polygons are drawn when the viewed
from positions:

p;(i) q.(ii)

A1

A2

B C

D

E F
G1

G2H

I

J

K

L

M

N

O

P
Q

R

ST

p

q

R

C

A2, B E

F,G1 D

M,Q

J,N

K,L H,P

G2 I,O

A1, S, T

Dr Jon Shiach & Dr Killian O’Brien 74 Computer Graphics Lecture Notes

Back to Table of Contents Chapter 4. Clipping and Hidden Surface Removal

Solution:
(i) Starting at the root node R.

• p is in the front subspace of R so we move to the right child node {M,Q}.
• p is in the back subspace of {M,Q} so we move to the left child node {J,N}.
• p is in the back subspace of {J,N} so we move to the left child node {K,L}.
• {K,L} is a leaf node so we draw the polygons {K,L} followed the parent node {J,N}

and move to the right child node {H,P}.
• p is in the front subspace of {H,P} so we move to the right child node {I,O}.
• {I,O} is a leaf node so we draw the polygons {I,O} followed by the parent node {H,P}

and move to the left child node G2.
• G2 is a left node so we draw the polygon G2 and move to the parent node {H,P}.
{H,P} has already been drawn so we move to its parent node {J,N}. {J,N} has
already been drawn so we move to its parent node {M,Q} which has not yet been
drawn so we draw polygons {M,Q} and move to the right child node {A1, S, T}.

• {A1, S, T} is a leaf node so we draw polygons {A1, S, T} and move to the parent node
{M,Q}. {M,Q} has already been drawn so we move to its parent node R which has
not yet been drawn so we draw R and move to the left child node C.

• p is in the front subspace of C so we move to the right child node E.
• p is in the back subspace of E so we move to the left child node {F,G1}.
• {F,G1} is a leaf node so we draw polygons {F,G1} followed by the parent node E and

move to the right child node D.
• D is a leaf node so we draw polygon D and move to the parent node E. E has already

been drawn so we move to its parent node C which has not yet been drawn so we draw
polygon C and move to the left child node {A2, B}.

• {A2, B} is a leaf node so we draw polygons {A2, B}.
• All nodes have now been drawn so the order with which the polygons were draw is

{K,L}, {J,N}, {I,O}, {H,P}, {M,Q}, {A1, S, T}, R, {F,G1}, E,D,C, {A2, B}.

(ii) Using the tree walk for position q the rendering order is

{A2, B}, C,D,E, {F,G1}, R, {A1, S, T}, {M,Q}, G2, {H,P}, {I,O}, {J,N}, {K,L}.

Dr Jon Shiach & Dr Killian O’Brien 75 Computer Graphics Lecture Notes

Chapter 4. Clipping and Hidden Surface Removal Back to Table of Contents

4.5 Lab exercises
Use the time in the lab to work on the coursework.

Dr Jon Shiach & Dr Killian O’Brien 76 Computer Graphics Lecture Notes

References

Carmack, J. and Romero, J. (1993). “Doom”. In: id software.

Schumaker, R., Brand, B., Gilliland, M., and Sharp, W. (1969). Study for applying computer generated
images to visual simulation. Tech. rep. General Electric Co.

77

Appendix A

Solutions to Lab Exercises

A.1 Vector geometry
These are the solutions to the lab exercises on page 20.

Solution 1.1.� �
a = [3, 4, 0];
norm(a)� �
Solution 1.2.� �
a = [3, 4, 0];
ahat = a / norm(a)

% Checking the magnitude
norm(ahat)� �
Solution 1.3.� �
a = [3, 4, 0];
b = [5, 12, 0];

% (i)
dot(a, b)

% (ii)
theta = acos(dot(a, b) / (norm(a) * norm(b)))

% (iii)
syms x
a = [1, 2, 3];
b = [4, x, 6];
x = solve(dot(a, b) == 0))� �
Solution 1.4.� �
% (i)
U = [1, 1 ; 0, 1];
W = [0, -1, ; 1, 1];
v = [3 ; 2];

rref(U)
rref(W)

% (ii)
v_U = U \ v
v_W = W \ v

79

Appendix A. Solutions to Lab Exercises Back to Table of Contents

% (iii)
UtoW = rref ([W, U]);
UtoW (:, 1:2) = []

% (iv)
v_W = UtoW * v_U� �
Solution 1.5.� �
% (i)
p1 = [5, 4, 1];
p2 = [6, -2, 3];

r = p1 + 1 / 4 * (p2 - p1)

% (ii)
syms t
p = [2, 0, 1];
d = [2, 2, 1];
solve(r == p1 + t * d)� �
Solution 1.6.� �
% (i)
p1 = [1, 0, 3];
p2 = [2, 1, 1];
p3 = [0, 1, 3];

n = cross(p2 - p1 , p3 - p1)
s = dot(n, p1)

% (ii)
p4 = [1, 2, 5]
dot(n, p4)� �
Solution 1.7.� �
p = [1, 0, 2];
v = [2, -1, 1];
q = [6, 4, 5];

t = dot(v, q - p) / dot(v, v)
r = p + t * v
d = norm(q - r)� �
Solution 1.8.� �
p = [1, 1, 3];
n = [1, -1, 1];
q = [4, -3, 2];

d = dot(q - p, n) / norm(n)� �

Dr Jon Shiach & Dr Killian O’Brien 80 Computer Graphics Lecture Notes

Back to Table of Contents Appendix A. Solutions to Lab Exercises

A.2 Translation, Rotation and Scaling Transformations
These are the solutions to the lab exercises on page 38.

Solution 2.1.� �
% (i)
% Define transformation
T = @(u) [2 * u(1) ; 3 * u(2)];

syms u1 u2 v1 v2 alpha
u = [u1 , u2];
v = [v1 , v2];

T(u + alpha * v)
T(u) + alpha * T(v)

% (ii)
A = [2, 0 ; 0, 3]

% (iii)
P = [1, 0, -1 ; 2, 3, 4];
A * P� �
Solution 2.2.� �
% (i)
T = [2, 0 ; 0, 3];
Tinv = inv(T)

% (ii)
syms x y
Tinv * [x ; y]� �
Solution 2.3.� �
% Define transformations
S = @(u) [2 * u(2) ; u(1)];
T = @(u) [3 * u(1) ; 2 * u(2)];

% (i)
S(T([3 ; 1]))

% (ii)
A = [0, 2 ; 1 , 0]
B = [3, 0 ; 0, 2]

% (iii)
A * B * [3 ; 1]

% (iv)
inv(B) * A * B * [1 ; 2]� �
Solution 2.4.� �
v1 = [1, 0, 1];
v2 = [3, 0, 1];
v3 = [2, 0, 3];
p = [3, 0, 1];

% Define translation function
T = @(p) [1, 0, 0, p(1) ; 0, 1, 0, p(2) ; 0, 0, 1, p(3) ; 0, 0, 0, 1];

% Co - ordinate matrix
P1 = [v1 ’, v2 ’, v3 ’];
P1(4, :) = ones(size(P1 , 2), 1)

Dr Jon Shiach & Dr Killian O’Brien 81 Computer Graphics Lecture Notes

Appendix A. Solutions to Lab Exercises Back to Table of Contents

% Apply translation
P2 = T(p) * P1

% Plot triangles
clf
patch(P1(1, :), P1(3, :), ’w’, ’EdgeColor ’, ’b’, ’FaceAlpha ’, 0)
patch(P2(1, :), P2(3, :), ’w’, ’EdgeColor ’, ’r’, ’FaceAlpha ’, 0)
axis ([0, 6, 0, 5])
xlabel (’x ’, ’FontSize ’, 16, ’Interpreter ’, ’latex ’)
ylabel (’z ’, ’FontSize ’, 16, ’Interpreter ’, ’latex ’)� �
Solution 2.5.� �
v1 = [1, 0, 1];
v2 = [3, 0, 1];
v3 = [2, 0, 3];
scal = [3, 1, 2];

% Define scaling function
S = @(scal) [scal (1) , 0, 0, 0 ; 0, scal (2) , 0, 0 ; 0, 0, scal (3) , 0 ; 0, 0, 0, 1];
% Co - ordinate matrix
P1 = [v1 ’, v2 ’, v3 ’];
P1(4, :) = ones(size(P1 , 2), 1);

% Apply scaling
P2 = S(scal) * P1
% Plot triangles
clf
patch(P1(1, :), P1(3, :), ’w’, ’EdgeColor ’, ’b’, ’FaceAlpha ’, 0)
patch(P2(1, :), P2(3, :), ’w’, ’EdgeColor ’, ’r’, ’FaceAlpha ’, 0)
axis ([0, 10, 0, 8])
xlabel (’x ’, ’FontSize ’, 16, ’Interpreter ’, ’latex ’)
ylabel (’z ’, ’FontSize ’, 16, ’Interpreter ’, ’latex ’)� �
Solution 2.6.� �
v1 = [2, 0, 2];
v2 = [4, 0, 2];
v3 = [3, 0, 4];
scal = [2, 1, 2];

% Calculate centre of the triangle
c = 1 / 3 * (v1 + v2 + v3)

% Transformation matrix
A = inv(T(c)) * S(scal) * T(c)

% Co - ordinate matrix
P1 = [v1 ’, v2 ’, v3 ’];
P1(4, :) = ones(size(P1 , 2), 1);

% Apply transformations
P2 = A * P1

% Plot triangles
clf
patch(P1(1, :), P1(3, :), ’w’, ’EdgeColor ’, ’b’, ’FaceAlpha ’, 0)
patch(P2(1, :), P2(3, :), ’w’, ’EdgeColor ’, ’r’, ’FaceAlpha ’, 0)
axis ([0, 6, 0, 6])
xlabel (’x ’, ’FontSize ’, 16, ’Interpreter ’, ’latex ’)
ylabel (’z ’, ’FontSize ’, 16, ’Interpreter ’, ’latex ’)� �
Solution 2.7.� �
Dr Jon Shiach & Dr Killian O’Brien 82 Computer Graphics Lecture Notes

Back to Table of Contents Appendix A. Solutions to Lab Exercises

v1 = [4, 0, 1];
v2 = [6, 0, 1];
v3 = [5, 0, 3];
theta = pi / 4;

% Define rotation transformation
Ry =@(t) [cos(t), 0, -sin(t), 0 ; 0, 1, 0, 0 ; sin(t), 0, cos(t), 0 ; 0, 0, 0, 1];
Ry(theta)

% Co - ordinate matrix
P1 = [v1 ’, v2 ’, v3 ’];
P1(4, :) = ones(size(P1 , 2), 1);

% Apply rotation
P2 = Ry(theta) * P1

% Plot triangles
clf
patch(P1(1, :), P1(3, :), ’w’, ’EdgeColor ’, ’b’, ’FaceAlpha ’, 0)
patch(P2(1, :), P2(3, :), ’w’, ’EdgeColor ’, ’r’, ’FaceAlpha ’, 0)
axis ([0, 6, 0, 6])
xlabel (’x ’, ’FontSize ’, 16, ’Interpreter ’, ’latex ’)
ylabel (’z ’, ’FontSize ’, 16, ’Interpreter ’, ’latex ’)� �
Solution 2.8.� �
p = [10, 5, 50];
d = [2, -1, -3];
theta = pi / 6;

% Rotation around the z axis
v = sqrt(d(1) ^ 2 + d(2) ^ 2);
c = d(1) / v;
scal = d(2) / v;
Rz = [c, scal , 0, 0 ; -scal , c, 0, 0 ; 0, 0, 1, 0 ; 0, 0, 0, 1]

% Check rotation matrix
Rz * [d’ ; 1]

% Rotation around the y axis
c = v / norm(d);
scal = - d(3) / norm(d);
Ry = [c, 0, -scal , 0 ; 0, 1, 0, 0 ; scal , 0, c, 0 ; 0, 0, 0, 1]

% Check rotation matrix
Ry * Rz * [d’ ; 1]

% Rotation around x axis
Rx = @(t) [1, 0, 0, 0 ; 0, cos(t), sin(t), 0 ; 0, -sin(t), cos(t), 0 ; 0, 0, 0, 1];
Rx(theta)� �

Dr Jon Shiach & Dr Killian O’Brien 83 Computer Graphics Lecture Notes

Appendix A. Solutions to Lab Exercises Back to Table of Contents

A.3 Virtual Environments
These are the solutions to the lab exercises on page 58.

Solution 3.1.� �
clear

% Define house object
Vhouse = [-1/2, 1/2, 1/2, -1/2, -1/2, 1/2, 1/2, -1/2, 0, 0 ;

-1, -1, 1, 1, -1, -1, 1, 1, -1, 1 ;
0, 0, 0, 0, 1, 1, 1, 1, 2, 2 ;
1, 1, 1, 1, 1, 1, 1, 1, 1, 1];

Fhouse = [1, 4, 3, 2, 2 ;
1, 2, 6, 9, 5 ;
2, 3, 7, 6, 6, ;
3, 4, 8, 10, 7 ;
1, 5, 8, 4, 4 ;
6, 7, 10, 9, 9 ;
5, 9, 10, 8, 8];

% Plot object space
clf
patch(’Vertices ’, Vhouse (1:3 , :) ’, ’Faces ’, Fhouse , ’FaceAlpha ’, 0)
axis ([-1, 1, -2, 2, 0, 2])
view (60, 30)
xlabel (’x ’, ’FontSize ’, 16, ’Interpreter ’, ’latex ’)
ylabel (’y ’, ’FontSize ’, 16, ’Interpreter ’, ’latex ’)
zlabel (’z ’, ’FontSize ’, 16, ’Interpreter ’, ’latex ’)� �
Solution 3.2.� �
theta = pi / 2; % rotation angle for the houses
p1 = [3, 3.5, 0]; % position of the first house
p2 = [3, 1.5, 0]; % position of the second house
p3 = [1.5 , 1.5, 0]; % position of the tower
scal = [0.5 , 0.5, 1.5]; % scaling factors for the tower

% Define transformation functions
T = @(p) [1, 0, 0, p(1) ; 0, 1, 0, p(2) ; 0, 0, 1, p(3) ; 0, 0, 0, 1];
S = @(s) [s(1) , 0, 0, 0 ; 0, s(2) , 0, 0 ; 0, 0, s(3) , 0 ; 0, 0, 0, 1];
Rz = @(t) [cos(t), sin(t), 0, 0 ; -sin(t), cos(t), 0, 0 ; 0, 0, 1, 0 ; 0, 0, 0, 1];

% Calculate world space co - ordinates for the first house
house1 = T(p1) * Rz(theta) * Vhouse

% Add house 1 to Fworld and Vworld
Fworld = Fhouse ;
Vworld = house1 ;

% Calculate world space co - ordinates for the second house
house2 = T(p2) * Rz(theta) * Vhouse

% Add house2 to Fworld and Vworld
Fworld = [Fworld ; Fhouse + size(Vworld , 2)];
Vworld = [Vworld , house2];

% Calculate world space co - ordinates for the tower
Vtower = [-1, 1, 1, -1, -1, 1, 1, -1 ;

-1, -1, 1, 1, -1, -1, 1, 1 ;
0, 0, 0, 0, 2, 2, 2, 2 ;
1, 1, 1, 1, 1, 1, 1, 1];

Ftower = [1, 4, 3, 2 ;
1, 2, 6, 5 ;
2, 3, 7, 6 ;
3, 4, 8, 7 ;

Dr Jon Shiach & Dr Killian O’Brien 84 Computer Graphics Lecture Notes

Back to Table of Contents Appendix A. Solutions to Lab Exercises

4, 1, 5, 8 ;
5, 6, 7, 8];

tower = T(p3) * S(scal) * Vtower

% Add tower to Fworld and Vworld
Ftower (:, 5) = Ftower (:, 4); % extend Ftower so that is has the same number of

columns as Fworld
Fworld = [Fworld ; Ftower + size(Vworld , 2)]
Vworld = [Vworld , tower]

% Plot world space
clf
patch(’Vertices ’, Vworld (1:3 , :) ’, ’Faces ’, Fworld , ’FaceAlpha ’, 0)
axis ([0, 5, 0, 5, 0, 5])
view (45, 55)
xlabel (’x ’, ’FontSize ’, 16, ’Interpreter ’, ’latex ’)
ylabel (’y ’, ’FontSize ’, 16, ’Interpreter ’, ’latex ’)
zlabel (’z ’, ’FontSize ’, 16, ’Interpreter ’, ’latex ’)� �
Solution 3.3.� �
p = [6, 5, 0.5]; % camera position
c = [2, 2, 1]; % centre of view
k = [0, 0, 1]; % up vector

% Calculate change of basis matrix
w = (p - c) / norm(p - c);
u = cross(k, w) / norm(cross(k, w));
v = cross(w, u);
R = [u, 0 ; v, 0 ; w, 0 ; 0, 0 ,0, 1]

% Check change of basis matrix
R * [(p - c)’ ; 1]

% Calculate alignment matrix
A = [u, -dot(p, u) ; v, -dot(p, v) ; w, -dot(p, w) ; 0, 0, 0, 1]

% Align world space to camera space
Vcamera = A * Vworld

% Plot camera space
clf
patch(’Vertices ’, Vcamera (1:2 , :) ’, ’Faces ’, Fworld , ’FaceAlpha ’, 0)
axis ([-3, 3, -3, 3])
xlabel (’x ’, ’FontSize ’, 16, ’Interpreter ’, ’latex ’)
ylabel (’y ’, ’FontSize ’, 16, ’Interpreter ’, ’latex ’)
box on� �
Solution 3.4.� �
near = -2; % near viewing plane
far = -10; % far viewing plane
fov = 1; % field of view angle
aspect = 4/3; % screen aspect ratio

% Calculate projection matrix
r = abs(near) * tan(fov / 2);
t = r / aspect ;
P = [near/r, 0, 0, 0 ; 0, near/t, 0, 0 ; 0, 0, far /(far -near), -far*near /(far -near) ;

0, 0, 1, 0]

% Project camera space co - ordinates onto the screen space
Vscreen = P * Vcamera
Vscreen = Vscreen ./ Vscreen (4, :)

Dr Jon Shiach & Dr Killian O’Brien 85 Computer Graphics Lecture Notes

Appendix A. Solutions to Lab Exercises Back to Table of Contents

% Plot screen space (with the border of the viewing frustum)
clf
patch(’Vertices ’, Vscreen (1:2 , :) ’, ’Faces ’, Fworld , ’FaceAlpha ’, 0)
patch ([-1, 1, 1, -1], [-1, -1, 1, 1], ’b’, ’FaceAlpha ’, 0, ’EdgeColor ’, ’b’)
axis ([-1.2 1.2, -1.2, 1.2])
xlabel (’x ’, ’FontSize ’, 16, ’Interpreter ’, ’latex ’)
ylabel (’y ’, ’FontSize ’, 16, ’Interpreter ’, ’latex ’)
box on� �

Dr Jon Shiach & Dr Killian O’Brien 86 Computer Graphics Lecture Notes

Index

alignment transformation matrix, 48
atomic subspace, 69
axes, 5

back face, 63
back-face culling, 63
basis, 10
binary space partitioning

BSP tree traversial, 74
binary tree, 69
BSP tree, 69
BSP visibility ordering, 73

camera space, 39
Cartesian co-ordinates, 5
centre of view, 47
change of basis matrix, 11
child node, 69
clipped screen space, 40
clipping, 59
co-ordinate matrix, 22
co-ordinate systems, 5
co-ordinates, 5
coincident polygons, 70
composite transformation matrix, 24
composite transformations, 24
convex set, 67
cross product, 9

determinant formula, 9
geometric definition, 9

dimension, 10
dot product, 8

algebraic definition, 8
geometric definition, 8

face matrix, 41
faces, 40
field of view, 53
front face, 63

hidden surface removal, 40
homogeneous co-ordinates, 5

hyperplane, 68

line definition, 13

normal vector, 16
normalising a vector, 6

object space, 39
orthographic projection, 50

painter’s algorithm, 66
parent node, 69
perspective projection, 51
plane definition, 13
point definition, 13
position vector, 13
projection plane, 50
projector, 51

raster, 40
rotation matrix, 32

scaling matrix, 28
scaling vector, 28
screen space, 39
Sutherland-Hodgman algorithm, 59

translation, 26
translation matrix, 26
tuple, 5

unit vectors, 6

vector addition and subtraction, 7
vector equation of a line, 14
vector equation of a plane, 16
vector magnitude, 6
vectors, 5
vertex matrix, 41
vertices, 40
viewing vector, 63

world space, 39

87

	Preliminaries
	Learning and Teaching
	Assessment
	Advice to students

	Vector Geometry
	Co-ordinate systems
	Vectors
	Points, lines and planes
	Distance calculations
	Lab exercises

	Translation, Rotation and Scaling Transformations
	Linear Transformations
	Translation
	Scaling
	Rotation
	Lab exercises

	Virtual Environments
	The viewing pipeline
	Defining objects
	Building a virtual environment
	Transforming to the camera space
	Projecting onto the screen space
	Lab exercises

	Clipping and Hidden Surface Removal
	Clipping
	Hidden surface removal
	Painter's algorithm
	Binary space partitioning
	Lab exercises

	Solutions to Lab Exercises
	Vector geometry
	Translation, Rotation and Scaling Transformations
	Virtual Environments

	Index

