
6G5Z3003 Mathematics of Computer Graphics & Virtual
Environments

Display Techniques

Dr Jon Shiach

2021 – 2021

© Department of Computing and Mathematics

Contents

1 Preliminaries 1
1.1 Introduction to the unit . 1
1.2 Review of linear algebra . 2
1.3 The graphics pipeline . 5
1.4 Polygons . 7

2 Rasterisation 9
2.1 Rasters . 9
2.2 Bresenham’s algorithm . 11
2.3 Drawing circles . 20
2.4 Drawing polygons . 25
2.5 Texture Mapping . 32
2.6 Perspective corrected texture mapping . 39
2.7 Normal mapping . 42
2.8 Exercises . 44

3 Image Processing 47
3.1 Antialiasing . 47
3.2 Convolution . 48

4 Bézier Curves 57
4.1 Bézier curves . 58
4.2 Bézier surfaces . 68
4.3 Exercises . 70

5 Hidden Surface Removal 73
5.1 Defining objects . 73
5.2 Back-face culling . 75
5.3 Painter’s algorithm . 78
5.4 Binary Space Partitioning . 81
5.5 Exercises . 89

6 Clipping 91
6.1 The viewing frustum . 91
6.2 Line clipping . 100
6.3 The Cyrus-Beck algorithm . 100
6.4 The Sutherland-Hodgman algorithm . 104
6.5 The Cohen-Sutherland algorithm . 108
6.6 Exercises . 112

7 Lighting 115
7.1 The Phong reflection model . 116
7.2 Shading methods . 127

i

Contents Back to Table of Contents

A Exercise solutions 135
A.1 Rasterisation . 135
A.2 Bézier curves . 138
A.3 Hidden surface removal . 139
A.4 Clipping . 140

Dr Jon Shiach ii Maths of Graphics and Virtual Environments

Chapter 1

Preliminaries

1.1 Introduction to the unit

Welcome to the Mathematics of Computer Graphics and Virtual Environments unit. In this unit you will
learn the mathematics and techniques that make the images and animations we see in modern computer
games and movies possible. The unit is split into two halves, Dr Killian O’Brien will be covering vector
geometry, linear transformations and projections that are used to define a virtual environments and enable
us to navigate around a virtual world and view it from different positions and directions. In this half of
the unit I will be covering the techniques required to display a virtual world on-screen in addition to image
processing techniques and drawing of smooth curves.

1.1.1 Assessment

This unit is assessed through a coursework assignment and an examination. The coursework assignment
is worth 30% of the unit and you be given a number of tasks to complete whilst studying the unit. These
tasks will include pen and paper calculations as well as writing programs in MATLAB. The examination is
worth 70% of the unit and will take place after this teaching block. You will be given a set of questions to
complete over a 27 hour period.

1.1.2 Teaching schedule

The teaching schedule for this half of the unit is shown in table 1.1. I will try to stick to this schedule as
closely as possible but students should be aware that there may be slight changes to this.

Table 1.1: Teaching schedule

Week Data (w/c) Content
1 01/03/2021 Preliminaries (chapter 1) and the rasterisation of lines and cir-

cles (chapter 2)
2 08/03/2021 Drawing polygons and texture mapping (chapter 2)
3 15/03/2021 Bézier curves (chapter 4) and image processing (chapter 3)
4 22/03/2021 Hidden surface removal (chapter 5)
5 29/03/2021 Clipping (chapter 6) and lighting (chapter 7)
6 26/04/2021 Consolidation and exam preparation

1

Chapter 1. Preliminaries Back to Table of Contents

1.2 Review of linear algebra
Computer graphics uses concepts and techniques from linear algebra. This section serves as a review of the
fundamental concepts you would have studied in the level 4 unit Linear Algebra and Programming Skills.

1.2.1 Co-ordinate systems
The Cartesian co-ordinate system uses a set of orthogonal (perpendicular) number lines known as axes
which, for three-dimensional space, are typically labelled x, y and z. The position of a point in a space is
given by a set of co-ordinates which are the signed distances along each axis expressed as an ordered set
in the form of a 3-tuple (x, y, z). Since x, y, z ∈ R then a Cartesian space is represented by Rn where n is
the number of spatial dimensions.

The order of the axes in R3 can follow one of two configurations commonly known as the left-handed
and right-handed configurations. If the thumb on our right hand represents the x-axis, the index finger
represents the y axis and the middle finger represents the z axis, then with your palm face up move
your thumb so that it is at a right-angle to your index finger which is pointing forwards and extend your
middle finger upwards. This is the right-handed co-ordinate system and is the one most commonly used in
mathematics (figure 1.1b).

Using the same fingers to represent the axes as before but this time on the left hand, if have your left palm
facing away from you with the fingers pointing upwards, extend the thumb so that it is at right-angle to
your index finger and point your middle finger forwards away from you. This is the left-handed co-ordinate
system (figure 1.1a) which is commonly used in computer graphics, therefore these notes will assume a
left-hand co-ordinate system.

x

z

y

(a) Left-handed co-ordinate system
x

y

z

(b) Right-handed co-ordinate system

Figure 1.1: The left and right-handed co-ordinate systems.

1.2.2 Homogeneous co-ordinates
In computer graphics applications, co-ordinates that define the position of a point are expressed using
homogeneous co-ordinates. Let (x, y, z, w) be the homogeneous co-ordinates corresponding to the
Cartesian co-ordinates in R3 (x′, y′, z′) where the following relationships apply

x′ = x

w
, y′ = y

w
, z′ = z

w
,

i.e., the Cartesian co-ordinates are calculated by dividing the x, y and z homogeneous co-ordinates by the
fourth element w. Note that when w = 1 the homogeneous co-ordinates (x, y, z, 1) correspond to the
Cartesian co-ordinates (x, y, z), so for many graphics applications we use w = 1 for simplicity. The reason
why homogeneous co-ordinates are used in computer graphics is because it allows us to apply translation
and projection operations using matrix multiplication.

1.2.3 Vectors
A vector is an object that has magnitude (length) and direction. In mathematical notation vectors are
denoted in one of three ways: by a boldface character, e.g., ~a (usually in print) or as an underlined character
when writing by hand, e.g., a. These notes will use will use boldface characters to represent vectors.

Dr Jon Shiach 2 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 1. Preliminaries

An individual vector is defined by the signed distance along each of the axes by a tuple. For example,
let a be a vector in three-dimensions defined by the 3-tuple a = (ax, ay, az) then a can be represented
geometrically as the arrow shown in figure 1.2.

x

y
z

a

ax ay

az

Figure 1.2: The vector a = (ax, ay, az).

Here follows some key definitions for vectors.

Definition 1. The magnitude of a vector a = (a1, a2, . . . , an) is denoted by ‖a‖ and is the length of the
vector and is calculated using

‖a‖ =

√√√√ n∑
i=1

a2
i . (1)

For example, given the vector a = (3, 4, 0) then the magnitude is

‖a‖ =
√

32 + 42 + 02 =
√

25 = 5.

Definition 2. A unit vector is a vector with a magnitude of 1. A unit vector can be found for any vector
by dividing the vector by its magnitude. The unit vector that points in the same direction as the vector a
is denoted by â (referred to as “a hat”) and can be calculated using

â = a
‖a‖ . (2)

For example, given the vector a = (3, 4, 0) the unit vector pointing in the same direction as a is

â = (3, 4, 0)
5 =

(3
5 ,

4
5 , 0

)
.

Definition 3. The dot product of two vectors a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) is defined by

a · b =
n∑
i=1

aibi = a1b1 + a2b2 + · · ·+ anbn. (3)

For example, the dot product of the two vectors a = (3, 4, 0) and b = (5, 12, 0) is

a · b = 3× 5 + 4× 12 + 0× 0 = 15 + 48 = 63.

Definition 4. The geometric definition of the dot product is

a · b = ‖a‖‖b‖ cos(θ), (4)

where θ is the angle between the two vectors (fig 1.3).

Dr Jon Shiach 3 Maths of Graphics and Virtual Environments

Chapter 1. Preliminaries Back to Table of Contents

a

b
θ

Figure 1.3: The two vectors a, b and the angle between them θ is related by the dot product.

Definition 5. The cross product of two vectors a = (a1, a2, a3) and b = (b1, b2, b3) in R3 is computed
using

a × b =

∣∣∣∣∣∣∣
i j k
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣∣ = (a2b3 − b2a3, a3b1 − a1b3, a1b2 − a2b1), (5)

and returns a vector that is perpendicular to both a and b (figure 1.4).

a

b

a × b

Figure 1.4: The cross product of the two vectors a and b produces a vector that is perpendicular
to the plan that a and b lie on.

For example, the cross product of the two vectors a = (3, 4, 0) and b = (1, 2, 3) is

a × b =

∣∣∣∣∣∣∣
i j k
3 4 0
1 2 3

∣∣∣∣∣∣∣
= (4× 3− 0× 2)i− (3× 3− 0× 1)j + (3× 2− 4× 1)k
= (12,−9, 2).

We can check that this vector is perpendicular to a and b by calculating the dot product, e.g.,

(12,−9, 2) · (3, 4, 0) = 36− 36 + 0 = 0,
(12,−9, 2) · (1, 2, 3) = 12− 18 + 6 = 0.

Dr Jon Shiach 4 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 1. Preliminaries

1.3 The graphics pipeline

The process of constructing a virtual world and rendering it on a computer display can be summarised by
the flow diagram called the graphics pipeline shown in figure 1.5.

Object space

World space

View space

Screen space

Raster

Display

Scale, rotate and translate objects

Translate and rotate

Project and clip to viewable region

Remove hidden surfaces, apply lighting and textures

Update display

Figure 1.5: The graphics pipeline.

Object space The three dimensional objects that are used to build the virtual world are each defined in
their own space (figure 1.6).

(a) Cube (b) Prism (c) Pyramid

Figure 1.6: Primitive objects are defined in their own object space.

World space Objects are scaled, rotated and translated into the world space to construct the virtual world
(figure 1.7).

Dr Jon Shiach 5 Maths of Graphics and Virtual Environments

Chapter 1. Preliminaries Back to Table of Contents

Figure 1.7: Objects are scaled, rotated and translated to build the virtual world in the World
space

View space The world space is viewed from a given position and direction. The world space is translated
so that the viewing position is at the origin and the direction of view is along the z-axis (figure 1.8).
A left-handed co-ordinate system is used from this step onwards such that the x and z-axes point
along the horizontal and the y-axis points vertically upwards.

(a) World space (b) View space (c) View space viewed along z axis

Figure 1.8: The world space is translated and rotated so that the viewing position is at the origin
and the direction of view is along the z-axis.

Screen space The view space is projected onto the screen space using perspective projection which
provides some indication of the distance of objects from the viewer (figure 1.9a). The screen space
objects are clipped to the viewable region so that any objects that the view should not be able to see
are removed (figure 1.9b). Clipping is covered in chapter 6.

Dr Jon Shiach 6 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 1. Preliminaries

(a) Screen space (b) Clipped screen space

Figure 1.9: The view space is projected onto the screen space using perspective projection and
clipped to the viewable region.

Raster The screen space is converted to a raster array which is a pixelised representation of the polygons
in the screen space (see chapter 2). This step can involve applying texture maps and lighting models.
The completed raster is then sent to the display.

Figure 1.10: The raster representation of the screen space.

1.4 Polygons
Polygons are the fundamental building blocks of a three-dimensional virtual environment so it is important
that they are well understood. To simplify the various techniques used in computer graphics and to help
keep computational costs to a minimum in practice only convex polygons are considered. If a concave
polygon is encountered we split it up into convex polygons. Usually we only deal with triangular polygons
since these are the simplest polygons but many of the techniques and examples used in these notes are
applicable to polygons with more than three edges.

Definition 6. A polygon is a plane figure that is defined by a closed loop of straight line segments. The
straight line segments are called edges and the position of the endpoints of an edge are called vertices
(singular: vertex).

Dr Jon Shiach 7 Maths of Graphics and Virtual Environments

Chapter 1. Preliminaries Back to Table of Contents

Definition 7. A convex polygon is a polygon where any straight line drawn through the polygon will
intersect the polygon edges at most twice.

Definition 8. A concave polygon is a polygon where it is possible to draw a straight line through the
polygon intersecting the polygon edges more than twice. A polygon is concave if it is not convex. Any
concave polygon can be split up into multiple convex polygons.

(a) convex polygon (b) concave polygon

Figure 1.11: Convex and concave polygons.

It is convenient to define polygons in a standard way so that techniques used to render polygons and to
determine their normal vectors for use in lighting and hidden surface removal (see chapter 7 and chapter 5)
are consistent. It is customary to list the vertices that define a polygon in an anti-clockwise direction
traversing around the circumference of a polygon. For example, the polygon shown in figure 1.12 is defined
by the vertices (xi, yi) where i = 0, 1, 2, 3 (it is customary to label the first vertex using an index of 0
although this is not strictly necessary).

x

y

(x0, y0)

(x1, y1)

(x2, y2)

(x3, y3)

Figure 1.12: Polygon vertices are indexed in an anti-clockwise order.

Dr Jon Shiach 8 Maths of Graphics and Virtual Environments

Chapter 2

Rasterisation

2.1 Rasters

Computer displays use an array of small squares called pixels which are illuminated using different colours.
When the array of pixels is viewed as a whole the brain interprets it as a single image (figure 2.1b).
The pixel array is called a raster array and the process of determining the illumination of the pixels is
called rasterisation. The image that is approximated as a raster array is known as the idealised image
(figure 2.1a).

(a) idealised image (b) rasterised image

Definition 9. A raster is a rectangular array of pixels that can be displayed on a screen.

Definition 10. A pixel is a small square that can be illuminated using different colours.

Definition 11. An idealised image is an analogue image that we want to approximate on a raster array.

2.1.1 The RGB colour model

The RGB colour model uses the three primary colours Red, Green and Blue (RGB) that are added to
produce colours in the visible spectrum figure 2.2. Using a single bit for each primary colour (i.e., adding
all of that colour or none of that colour) means that it is possible to produce eight colours: red, yellow,
green, cyan, blue, magenta, black and white (table 2.1). Adding proportions of each primary colours means
that many more colours can be produced. Using 8 bits for each primary colour means that are a possible
28 = 256 different quantities of that colour. Combining the three primary colours means that the number
of colours that can be produced is 28×28×28 = 224 = 16, 772, 216. It is estimated that the most number
of colours that the human eye can distinguish is approximately 10 million so 24 bit colour (known as true
color) is considered sufficient.

9

Chapter 2. Rasterisation Back to Table of Contents

Figure 2.2: The RGB colour wheel

Table 2.1: The RGB codes for the colours produced using 3 bit colour.

Colour Red Green Blue

Red 1 0 0
Yellow 1 1 0
Green 0 1 0
Cyan 0 1 1
Blue 0 0 1
Magenta 1 0 1
Black 0 0 0
White 1 1 1

2.1.2 Raster arrays
The information that defines a raster can be stored in a raster array. If a raster is nx pixels wide by ny
pixels high then it can be defined either as an ny ×nx array where each element contains a number that is
linked to a colour corresponding to that pixel or as an ny × nx × 3 array where each pixel is defined using
the three primary colours in the RGB colour model.

The MATLAB command imread can be used to read in the raster information for an image file and store
it in an array. For example the following commands reads in the raster information for the image file
cavendish.jpg into the array img and uses the whos commands to output its size.� �
img = imread (’cavendish .jpg ’);
X = im2double (X);
whos img� �
This produces the output� �

Name Size Bytes Class Attributes

img 240 x320x3 230400 uint8� �
Here the raster array img is a 240 pixels high by 320 pixels wide.

Dr Jon Shiach 10 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 2. Rasterisation

2.1.3 Plotting raster arrays in MATLAB

An array containing raster information can be plotted in MATLAB using the image command. For example,� �
image(img)� �
produces the following plot shown in figure 2.3.

Figure 2.3: Raster array plotted using the image command.

2.1.4 Pixel co-ordinates

The co-ordinates of individual pixels in a raster are in the range [0, nx] and [0, ny] for the horizontal and
vertical directions respectively where the co-ordinate (0, 0) is the pixel in the top left-hand corner and the
y co-ordinate increases as we move down the raster (this can be seen in the plot in figure 2.3). The reason
for this that digital displays are refreshed using horizontal lines of pixels from top to bottom.

If x, y ∈ [0, 1] are raster space co-ordinates then the corresponding pixel co-ordinates are

xpixel = bxnxc, (6a)
ypixel = b(1− y)nyc, (6b)

where bxc rounds x to the integer below (also known as the floor operator). Note that the y co-ordinate
is subtracted from 1 to ensure that the pixel co-ordinates (0, 0) correspond to the top-left hand element in
the raster array.

2.2 Bresenham’s algorithm

One of the fundamental tasks in computer graphics is the rendering of a straight line on a display. Consider
the diagram showing the rasterisation of the straight line joining the two points at (x0, y0) and (x1, y1)
shown in figure 2.4. The pixels that are closest to the line are shaded to create a rasterised approximation
of the idealise image. This is a simple task for a human since we are able to view the idealised image and
determine which pixels need to be shaded, however this is tricky for a computer. Therefore algorithms are
required to determine which pixels to illuminate in order to rasterise straight lines.

Dr Jon Shiach 11 Maths of Graphics and Virtual Environments

Chapter 2. Rasterisation Back to Table of Contents

0 1 2 3 4 5 6 7 8 9 10 11 12

6

5

4

3

2

1

0

Figure 2.4: Rasterising a straight line.

Bresenham’s algorithm (Bresenham 1965) is a line drawing algorithm that uses integer only arithmetic
therefore offers a vast improvement over other methods in terms of computational efficiency.

Consider the straight line joining points (x0, y0) and (x1, y1)

y = ∆y
∆xx+ c,

where ∆x = x1 − x0 and ∆y = y1 − y0. Rearranging gives

0 = (∆y)x− (∆x)y + (∆x)c,

and defining the function f(x, y) as

f(x, y) = (∆y)x− (∆x)y + (∆x)c,

then if f(x, y) = 0 the point (x, y) is on the line.

The premise behind Bresenham’s algorithm is that we use the sign of the value of f(x, y) at the midpoint
between the two pixels whose centres lie either side of the idealised line to determine which of these pixels
is plotted. Consider figure 2.5, we know that our idealised line will start at the pixel with co-ordinates
(x0, y0) so we plot this pixel. Assuming that x0 < x1 and y0 < y1 so our line is drawn from left-to-right
and top-to-bottom (we will consider the other cases later) we have a choice between the two pixels at
(x0 + 1, y0) and (x0 + 1, y0 + 1) which to plot next. To decide which of these pixels is plotted we can
use the value of f(x0 + 1, y0 + 1

2) to determine which of these two pixels is closer to the idealised line. If
f(x0 + 1, y0 + 1

2) < 0 then the pixel at (x0 + 1, y0) is closer to the idealised line and is plotted else the
pixel at (x0 + 1, y0 + 1) is closer and plotted.

y0

y0 + 1
2

y0 + 1

x0 x0 + 1 x0 + 2

Figure 2.5: When rasterising a straight line we plot the pixel whose centre is closest to the line.

Dr Jon Shiach 12 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 2. Rasterisation

Example 1 Consider the line joining the two co-ordinates (1, 1) and (6, 4). The Cartesian equation of this
line is

y = 3
5x+ 2

5 ,

so
f(x, y) = 3x− 5y + 2.

We plot the first pixel at (1, 1) and then have a choice between the pixels at (2, 1) and (2, 2). Calculating
f(2, 1.5) for these we have

f(2, 1.5) = 3(2)− 5(1.5) + 2 = 0.5,

and since f(2, 1.5) > 0 the pixel (2, 2) is closer to the idealised line and is plotted.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

?

?

Continuing to the the next two pixels we have a choice between (3, 3) and (3, 4). Calculating f(3, 2.5) for
these we have

f(3, 2.5) = 3(3)− 5(2.5) + 2 = −1.5,

and since f(3, 1.5) < 0 the pixel at (3, 2) is closer and is plotted.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

?

?

We can continue in this way until we reach the last pixel at (6, 4).

Whilst this method does perform as intended it has one major disadvantage that it requires floating
point calculations (calculations involving non-integer quantities). Floating point operations are relatively
expensive for a computer to calculate.

Dr Jon Shiach 13 Maths of Graphics and Virtual Environments

Chapter 2. Rasterisation Back to Table of Contents

2.2.1 Derivation of Bresenham’s algorithm
To derive an algorithm that uses integer only values we can define a difference D between the midpoint
between two candidate pixels which is updated as we move along the line. Initially the pixel at (x0, y0) is
plotted and we define D as

D = f

(
x0 + 1, y0 + 1

2

)
− f(x0, y0)

= (∆y)(x0 + 1)− (∆x)
(
y0 + 1

2

)
+ (∆x)c− (∆y)x0 + (∆x)y0 − (∆x)c

= (∆y)x0 + ∆y − (∆x)y0 −
1
2∆x− (∆y)x0 + (∆x)y0

= ∆y − 1
2∆x. (7)

If the value of D ≤ 0 then the pixel at (x0 + 1, y0) is closer to the idealised line is plotted, else if D > 0
we plot (x0 + 1, y0 + 1) (figure 2.6)

D ≤ 0
D > 0

y0

y0 + 1
2

y0 + 1

x0 x0 + 1 x0 + 2

Figure 2.6: When rasterising a straight line we plot the pixel whose centre is closest to the line.

This value of D is updated by ∆D the value of which depends upon which of the two candidate pixels
were plotted. If D ≤ 0 then ∆D is

∆D = f

(
x0 + 2, y0 + 1

2

)
− f

(
x0 + 1, y0 + 1

2

)
= (∆y)(x0 + 2)− (∆x)

(
y0 + 1

2

)
+ (∆x)c− (∆y)(x0 + 1) + (∆x)

(
y0 + 1

2

)
− (∆x)c

= (∆y)x0 + 2∆y − (∆x)y0 −
1
2∆x0 − (∆y)x0 −∆y + (∆x)y0 + 1

2∆x

= ∆y. (8)
Else if D > 0 then ∆D is

∆D = f

(
x0 + 2, y0 + 3

2

)
− f

(
x0 + 1, y0 + 1

2

)
= (∆y)(x0 + 2)− (∆x)

(
y0 + 3

2

)
+ (∆x)c− (∆y)(x0 + 1) + (∆x)

(
y0 + 1

2

)
− (∆x)c

= (∆y)x0 + 2∆y − (∆x)y0 −
3
2∆x− (∆y)x0 −∆y + (∆x)y0 + 1

2∆x

= ∆y −∆x. (9)

Equation (7) includes a floating point number in 1
2 and since we are only interested in the sign of D and

not its value, we can multiply equations (7) to (9) by 2 to give
D = 2∆y −∆x, (10)

∆D =
{

2∆y, D ≤ 0,
2∆y − 2∆x, D > 0,

(11)

Dr Jon Shiach 14 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 2. Rasterisation

which are all integer only expressions.

Bresenham’s algorithm is presented in formal algorithmic notation in algorithm 1.

Algorithm 1 Bresenham’s algorithm
function DrawLine(R, x0, y0, x1, y1, colour)

Initialise ∆x← x1 − x0, ∆y ← y1 − y0, D ← 2∆y −∆x and y ← y0
for x := x0 . . . x1 do

R(y, x)← colour . Note that (y, x) uses matrix indexing
if D > 0 then

y ← y + 1
D ← D − 2∆x

end if
D ← D + 2∆y

end for
return R

end function

Example 2 Use Bresenham’s algorithm to determine the co-ordinates of the pixels on the line joining the
two pixels with co-ordinates (1, 1) and (6, 4).

∆x = 6− 1 = 5, ∆y = 4− 1 = 3, D = 2(3)− 5 = 1.

Looping through x values from 1 to 6

x = 1, y = 1, D = 1 > 0 ∴ D = 1 + 2(3)− 2(5) = −3,
x = 2, y = 2, D = −3 ≤ 0 ∴ D = −3 + 2(3) = 3,
x = 3, y = 2, D = 3 > 0 ∴ D = 3 + 2(3)− 2(5) = −1,
x = 4, y = 3, D = −1 ≤ 0 ∴ D = −1 + 2(3) = 5,
x = 5, y = 3, D = 5 > 0 ∴ D = 5 + 2(3)− 2(4) = 1,
x = 6, y = 4.

So the pixels at (1, 1), (2, 2), (3, 2), (4, 3), (5, 3) and (6, 4) are plotted.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

2.2.2 MATLAB code
The MATLAB code in listing 2.1 uses Bresenham’s algorithm to draw the straight line from example 2.
The array colour is a 3× 1 array that defines the line colour which is blue in this case since R = 0, G = 0
and B = 1. The raster array img is a 6 × 8 × 3 array initialised so that all of its values are ones so the
background colour will be white. The function drawline contains Bresenham’s algorithm so that it can

Dr Jon Shiach 15 Maths of Graphics and Virtual Environments

Chapter 2. Rasterisation Back to Table of Contents

be used to draw a line given the background raster array, the start and end co-ordinates and the colour of
the line. Note that we need to add 1 to the x and y co-ordinates when plotting each pixel since MATLAB
arrays start indexing from 1 and not 0.

Listing 2.1: MATLAB program that uses Bresenham’s algorithm to draw a straight line.� �
% Initialise raster array
nx = 8;
ny = 6;
img = ones(ny , nx , 3);

% Define start and end co - ordinates and line colour
x0 = 1;
y0 = 1;
x1 = 6;
y1 = 4;
colour = [0 ; 0 ; 1];

% Draw line
img = drawline (img , x0 , y0 , x1 , y1 , colour);

% Plot raster
image(img)
axis equal

function raster = drawline (raster , x0 , y0 , x1 , y1 , colour)

dx = x1 - x0;
dy = y1 - y0;
D = 2 * dy - dx;
y = y0;

for x = x0 : x1
raster (y+1, x+1, :) = colour ;
if D > 0

D = D - 2 * dx;
y = y + 1;

end
D = D + 2 * dy;

end

end� �

Dr Jon Shiach 16 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 2. Rasterisation

2.2.3 Drawing lines in all directions
The algorithm presented in algorithm 1 only works for lines that are drawn going down and to the right
with a gradient less than 1 (i.e., x0 < x1, y0 < y1 and ∆x > ∆y). The basic algorithm can be extended by
considering steps in the x and y directions separately which results in the algorithm shown in algorithm 2.
Note that in the modified algorithm we introduce a new variable E which is used tests to determine whether
the x and y co-ordinates are incremented.

Algorithm 2 Bresenham’s algorithm for drawing lines in all directions
function DrawLine(R, x0, x1, y0, y1, colour)

Initialise ∆x← |x1 − x0|, ∆y ← |y1 − y0| and D ← ∆x−∆y

Calculate sx ←
{

1, x0 < x1,

−1, x0 > x1,
and sy ←

{
1, y0 < y1,

−1, y0 > y1.
while true do

R(y0, x0)← colour
if x0 = x1 and y0 = y1 then

return R . Exit function when last pixel has been plotted
end if
E ← 2D
if E ≥ −∆y then

x0 ← x0 + sx
D ← D −∆y

end if
if E ≤ ∆x then

y0 ← y0 + sy
D ← D + ∆x

end if
end while

end function

Dr Jon Shiach 17 Maths of Graphics and Virtual Environments

Chapter 2. Rasterisation Back to Table of Contents

Example 3 Use Bresenham’s algorithm for drawing lines in any direction to determine the co-ordinates of
the pixels on the lines joining the following points:

(i) (0,0) and (4,6);

(ii) (6,1) and (2,4);

Solution:

(i) ∆x = 4− 0 = 4, ∆y = 6− 0 = 6, sx = 1, sy = 1, D = 4− 6 = −2.

Stepping through the algorithm:

x0 = 0, y0 = 0, E = 2(−2) = −4 ≥ −∆y ∴ x0 = 0 + 1 = 1, D = −2− 6 = −8,
E = −4 ≤ ∆x ∴ y0 = 0 + 1 = 1, D = −8 + 4 = −4,

x0 = 1, y0 = 1, E = 2(−4) = −8 < −∆y,
E = −8 ≤ ∆x ∴ y0 = 1 + 1 = 2, D = −4 + 4 = 0,

x0 = 1, y0 = 2, E = 2(0) = 0 ≥ −∆y ∴ x0 = 1 + 1 = 2, D = 0− 6 = −6,
E = 0 ≤ ∆x ∴ y0 = 2 + 1 = 3, D = −6 + 4 = −2,

x0 = 2, y0 = 3, E = 2(−2) = −4 ≥ −∆y ∴ x0 = 2 + 1 = 3, D = −2− 6 = −8,
E = −4 ≤ ∆x ∴ y0 = 3 + 1 = 4, D = −8 + 4 = −4,

x0 = 3, y0 = 4, E = 2(−4) = −8 < −∆y,
E = −8 ≤ ∆x ∴ y0 = 4 + 1 = 5, D = −4 + 4 = 0,

x0 = 3, y0 = 5, E = 2(0) = 0 ≥ −∆y ∴ x0 = 3 + 1 = 4, D = 0− 6 = −6,
E = 0 ≤ ∆x ∴ y0 = 5 + 1 = 6, D = −6 + 4 = −2,

x0 = 4, y0 = 6.

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

Dr Jon Shiach 18 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 2. Rasterisation

(ii) ∆x = |2− 6| = 4, ∆y = |4− 1| = 3, sx = −1, sy = 1, D = 4− 3 = 1.

Stepping through the algorithm:

x0 = 6, y0 = 1, E = 2(1) = 2, E ≥ −∆y ∴ x0 = 6− 1 = 5, D = 1− 3 = −2,
E ≤ ∆x ∴ y0 = 1 + 1 = 2, D = −2 + 4 = 2,

x0 = 5, y0 = 2, E = 2(2) = 4, E ≥ −∆y ∴ x0 = 5− 1 = 4, D = 2− 3 = −1,
E ≤ ∆x ∴ y0 = 2 + 1 = 3, D = −1 + 4 = 3,

x0 = 4, y0 = 3, E = 2(3) = 6, E ≥ −∆y ∴ x0 = 4− 1 = 3, D = 3− 3 = 0,
E > ∆x

x0 = 3, y0 = 3, E = 2(0) = 0, E ≥ −∆y ∴ x0 = 3− 1 = 2,
E ≤ ∆x ∴ y0 = 3 + 1 = 4,

x0 = 2, y0 = 4.

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

Dr Jon Shiach 19 Maths of Graphics and Virtual Environments

Chapter 2. Rasterisation Back to Table of Contents

2.3 Drawing circles

Now that we have the ability to rasterise straight lines the next fundamental problem is the rasterisation
of circles. This can be done by deriving a Bresenham-type algorithm that uses the Cartesian equation of a
circle to determine which of two candidate pixels are plotted.

2.3.1 Circle symmetry

The circle line drawing algorithms can use the concept of circle symmetry to reduce the number of
computations required to rasterise a circle. Consider figure 2.7 where a circle is centred at the origin, if the
coordinate of a point on the circle in the shaded octant where x > y is known (x, y) then the corresponding
points on the circle in the other seven octants can be found via circle symmetry through combinations of
(±x,±y) and (±y,±x).

x

y

(x,−y)

(y,−x)(−y,−x)

(−x,−y)

(−x, y)

(−y, x) (y, x)

(x, y)

y = x

Figure 2.7: Given the co-ordinates of the point (x, y), the corresponding points in the seven
other octants can be found using circle symmetry.

For circles not centred at the original, which will be the case in the vast majority of applications, we
calculate the co-ordinates of a point on the circle in the first octant (x, y) and then add the co-ordinates
of the circle centre (cx, cy) giving the following eight pixel co-ordinates

(cx + x, cy + y), (cx + x, cy − y), (cx − x, cy + y), (cx − x, cy − y),
(cx + y, cy + x), (cx + y, cy − x), (cx − y, cy + x), (cx − y, cy − x).

2.3.2 The midpoint algorithm

The midpoint algorithm (Pitteway 1967) is a form of Bresenham’s algorithm that is used to draw circles.
Consider the Cartesian equation of a circle centred at (0, 0) with radius r

x2 + y2 = r2,

which an be rearranged to give
0 = x2 + y2 − r2,

and defining the function f(x, y) as
f(x, y) = x2 + y2 − r2,

then if f(x, y) = 0 we know that the point (x, y) is on the circle.

Dr Jon Shiach 20 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 2. Rasterisation

y

y + 1

y + 2

xx− 1x− 2

x− 1
2x− 3

2

D ≤ 0

D > 0

Figure 2.8: The midpoint algorithm uses the distance between the midpoint between two pixels
and the ideal line to determine which pixel to illuminate.

To derive an algorithm to rasterise a circle we assume that the circle is centred at (0, 0) and we start at
the pixel at the 3 o’clock position with pixel co-ordinates (r, 0). We then move clockwise around the circle
calculating the pixels that lie closest to the idealised circle until x = y which is the end of the first octant.
For each pixel co-ordinates we calculate, the pixel co-ordinates of the corresponding pixels in the 7 other
octants are calculated using circle symmetry.

Once the first pixel (r, 0) is plotted we move down by one pixel so that y = 1 and we have a choice between
the two pixels at (r, 1) and (r−1, 1) to plot next. Similar to Bresenham’s line drawing algorithm, we define
a value D as the difference between the value of f(x, y) between the first pixel (r, 0) and the midpoint
between the two pixels (r, 1) and (r − 1, 1).

D = f

(
r − 1

2 , 1
)
− f(r, 0)

=
(
r − 1

2

)2
+ 12 − r2 − r2 − 02 + r2

= r2 − r + 1
4 + 1− r2

= 5
4 − r. (12)

If D ≤ 0 then we plot the pixel at (x, y + 1) (figure 2.8) and the change in the value of D is

∆D = f

(
x− 1

2 , y + 2
)
− f

(
x− 1

2 , y + 1
)

=
(
x− 1

2

)2
+ (y + 2)2 − r2 −

(
x− 1

2

)2
− (y + 1)2 + r2

= y2 + 4y + 4− y2 − y − 1
= 2y + 3. (13)

Dr Jon Shiach 21 Maths of Graphics and Virtual Environments

Chapter 2. Rasterisation Back to Table of Contents

Else if D > 0 then we plot the pixel at (x− 1, y + 1) and the change in the value of D is

∆D = f

(
x− 3

2 , y + 2
)
− f

(
x− 1

2 , y + 1
)

=
(
x− 3

2

)2
+ (y + 2)2 − r2 −

(
x− 1

2

)2
− (y + 1)2 + r2

= x2 − 3x+ 9
4 + y2 + 4y + 4− x2 + x− 1

4 − y
2 − 2y − 1

= 2y − 2x+ 5. (14)

Equation (12) contains a floating point number in 5
4 , similar to Bresenham’s algorithm we can multiply

equations (12) to (14) by 4 so that we have integer only expressions for D and ∆D

D = 5− 4r, (15)

∆D =
{

8y + 12, D > 0,
8y − 8x+ 20, D ≤ 0.

(16)

The midpoint algorithm for rasterising circles is shown in algorithm 3.

Algorithm 3 The midpoint circle drawing algorithm
function DrawCircle(R, cx, cy, r, colour)

Initialise D ← 5− 4r, x← r and y ← 0
while y ≤ x do

R(cx ± x, cy ± y)← colour
R(cx ± y, cy ± x)← colour
if D > 0 then

D ← D − 8x+ 8
x← x− 1

end if
D ← D + 8y + 12
y ← y + 1

end while
return R

end function

Dr Jon Shiach 22 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 2. Rasterisation

Example 4 Use the midpoint algorithm to rasterise a circle centred at (11, 11) with radius 10.

x = 10, y = 0, D = 5− 4(10) = −35

Stepping through the algorithm:

x = 10, y = 0, D ≤ 0, ∴ D = −35 + 8(0) + 12 = −23,
x = 10, y = 1, D ≤ 0, ∴ D = −23 + 8(1) + 12 = −3,
x = 10, y = 2, D ≤ 0, ∴ D = −3 + 8(2) + 12 = 25,
x = 10, y = 3, D > 0, ∴ D = 25 + 8(3)− 8(10) + 20 = −11,
x = 9, y = 4, D ≤ 0, ∴ D = −11 + 8(4) + 12 = 33,
x = 9, y = 5, D > 0, ∴ D = 33 + 8(5)− 8(9) + 20 = 21,
x = 8, y = 6, D > 0, ∴ D = 21 + 8(6)− 8(8) + 20 = 25,
x = 7, y = 7.

Plotting the pixels in the first octant:

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

Adding the centre co-ordinates gives

(21, 11), (21, 12), (21, 13), (21, 14), (20, 15), (20, 16), (19, 17), (18, 18).

Plotting the complete circle:

Dr Jon Shiach 23 Maths of Graphics and Virtual Environments

Chapter 2. Rasterisation Back to Table of Contents

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

Dr Jon Shiach 24 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 2. Rasterisation

2.4 Drawing polygons
As well as being able to draw lines on a raster display we also need to be able to draw polygons. Drawing
polygons can be achieved using one of two approaches, we can either draw the outline of the polygon
using line drawing algorithms and then fill in all of the pixels inside the polygon or just draw the polygon,
including the pixels in the interior, all at once. A successful method should produce a filled polygon with no
holes in the interior of the polygon, i.e., all pixels that are contained within a polygon should be illuminated
using the desired colour. These notes discuss two algorithms that use each of these approaches: the flood
fill algorithm and the scanline fill algorithm.

2.4.1 The flood fill algorithm
The flood fill algorithm is used to fill a polygon that has been rendered on a raster array using the line
drawing algorithms seen in chapter 2. Given the position of a starting pixel (x0, y0) that is known to be in
the interior of the polygon, the flood fill algorithm illuminates that pixel and moves to a neighbouring pixel
either to the east, west, north or south direction. At each pixel, a check is performed to see whether the
pixel requires illuminating. A pixel is only illuminated if its current colour is the same as a target colour.
If the pixel is to be illuminated then its colour is set to that of the replacement colour and the process is
restarted using an adjacent pixel.

To keep track of the pixels that need to be considered a LIFO (Last In First Out) queue is used. The queue
is initialised so that it only contains the starting pixel (x0, y0). At each iteration of the method the last
pixel in the queue is removed and is checked to see if the current colour of the pixel is the same as the
target colour. If it is then this the pixel is plotted using the replacement colour and the four neighbouring
pixels to the right, left, bottom and top are added onto the end of the queue. This continues until the
queue is empty.

Algorithm 4 The flood fill algorithm
function FloodFill(R, x0, y0, target colour, replacement colour)

Q← {(x0, y0)}
while Q 6= ∅ do

(x, y)← last pixel in Q
Remove last pixel from Q
if R(x, y) = target colour then

R(x, y)← replacement colour
Append pixels (x+ 1, y), (x− 1, y), (x, y + 1) and (x, y − 1) to Q

end if
end while
return R

end function

Dr Jon Shiach 25 Maths of Graphics and Virtual Environments

Chapter 2. Rasterisation Back to Table of Contents

Example 5 Starting with the pixel at (3, 4), use the flood fill algorithm to fill in the polygon on the raster
in figure 2.9a where the target colour is white and the replacement colour is red.

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7
7

(a)
0

0

1

1

2

2

3

3

4

4

5

5

6

6

7
7

(b)
0

0

1

1

2

2

3

3

4

4

5

5

6

6

7
7

(c)

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7
7

(d)
0

0

1

1

2

2

3

3

4

4

5

5

6

6

7
7

(e)
0

0

1

1

2

2

3

3

4

4

5

5

6

6

7
7

(f)

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7
7

(g)
0

0

1

1

2

2

3

3

4

4

5

5

6

6

7
7

(h)
0

0

1

1

2

2

3

3

4

4

5

5

6

6

7
7

(i)

Figure 2.9: Flood fill example

We begin by initialising the queue to contain the starting pixel

Q = {(3, 4)}.

We remove this pixel from the queue and check the current colour is the same as the target colour, which
it is so we fill this pixel red (figure 2.9b) and append the pixels to the right, left, bottom and top of pixel
(3, 4) to the queue.

Q = {(4, 4), (2, 4), (3, 5), (3, 3)︸ ︷︷ ︸
neighbouring pixels to (3, 4)

}.

We now remove pixel (3, 3) from Q. Its colour is the same as the target colour so we fill this pixel red
(figure 2.9c) and append the neighbouring pixels to the end of Q.

Q = {(4, 4), (2, 4), (3, 5), (4, 3), (2, 3), (3, 4), (3, 2)︸ ︷︷ ︸
neighbouring pxiels to (3, 3)

}.

Dr Jon Shiach 26 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 2. Rasterisation

We now remove pixel (3, 2) from Q. Its colour is not the same as the target colour so we reject this and
remove the next last pixel in Q, (3, 4). This is also not the same as the target colour so is rejected and we
remove pixel (2, 3). This is also not the same as the target colour so is rejected and we remove pixel (4, 3).
This is the same as the target colour so we fill this pixel red (figure 2.9d) and append the neighbouring
pixels to the end of Q.

We proceed in the same way that results in the the following queue. The underlined pixel denotes the pixel
that is plotted in each step.

Q = {(4, 4), (2, 4), (3, 5), (5, 3), (3, 3), (4, 4), (4, 3)},
Q = {(4, 4), (2, 4), (3, 5), (5, 3), (3, 3), (5, 4), (3, 4), (4, 5), (4, 3)},
Q = {(4, 4), (2, 4), (3, 5), (5, 3), (3, 3), (5, 4), (3, 4), (5, 5), (3, 5), (4, 6), (4, 4)},
Q = {(4, 4), (2, 4), (3, 5), (5, 3), (3, 3), (5, 4), (3, 4), (5, 5), (4, 5), (2, 5), (3, 6), (3, 4)},
Q = {(4, 4), (2, 4), (3, 5), (5, 3), (3, 3), (5, 4), (3, 4), (5, 5), (4, 5), (3, 5), (1, 5), (2, 6), (2, 4)},
Q = ∅.

2.4.2 Use of the flood fill algorithm
Since the flood fill algorithm uses adjacent pixels to the four compass directions to spread the fill colour
across a polygon is cannot spread across tight corners (figure 2.10). This can be desirable since if the
width of the outline is a single pixel then the flood fill will not leak outside of the polygon. In practice the
flood fill algorithm is too computationally expensive to be used for virtual worlds and is only really used in
drawing applications to provide a filling tool.

Figure 2.10: The flood fill algorithm is blocked by tight corners.

Dr Jon Shiach 27 Maths of Graphics and Virtual Environments

Chapter 2. Rasterisation Back to Table of Contents

2.4.3 Scanline filling algorithm
The scanline filling algorithm is a method of rendering a polygon without drawing the edges beforehand
unlike that flood fill algorithm that requires an outline. Instead of testing pixels one by one, the scanline
filling algorithm loops through horizontal rows of pixels (known as a scanline) starting from the vertex
with the smallest y co-ordinate and going down to the vertex with the largest y co-ordinate. Every edge
of a polygon is tested to see whether it intersects with the current scanline. If an edge intersects with the
scanline, the co-ordinates of the intersection points, known as scan extrema, are calculated using linear
interpolation and all of the pixels between pairs of intersection points are filled.

Definition 12. A scanline is a row of pixels on a display raster.

Definition 13. The scan extrema are the intersection points between a scanline and an edge of a polygon.

scanline
xL xR

Figure 2.11: The row of pixels between the scan extrema points xL and xR inclusive are illumi-
nated for each scanline.

The co-ordinates of the scan extrema are calculated using linear interpolation between the two vertices that
define an edge. Consider figure 2.12 where a polygon is defined by the vertices (x0, y0), (x1, y1) and (x2, y2)
listed in anti-clockwise order. For each scanline there are two scan extrema with co-ordinates (xL, y) and
(xR, y) for the left and right-hand side of the polygon respectively. Using the scanline algorithm we begin
at the co-ordinate with the smallest y value which is (x2, y2) in this case so we initialise xL = xR = x2 and
y = y2. Moving down the scanlines the y co-ordinate is incremented by 1 and the xL and xR co-ordinates
are calculated using the previous values.

y

x

(x0, y0)

(x2, y2)

(x1, x1)

xL,i

xL,i+1

xR,i

xR,i+1

yi
scanline

yi + 1
∆xL ∆xR

Figure 2.12: Calculating the scan extrema co-ordinates.

Dr Jon Shiach 28 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 2. Rasterisation

To calculate the x co-ordinate of the scan extrema we can use the Cartesian equation of a straight line

y = ∆y
∆xx+ c,

where ∆y = y0− y2 and ∆x = x0−x2 for the left edge and ∆y = y1− y2 and ∆x = x1−x2 for the right
edge. Assuming that (xL,i, yi) is a known scan extrema co-ordinate on the left edge we can determine the
value of the constant c using

c = yi −
∆y
∆xxL,i,

Substituting this expression into the equation of a straight line and rearranging to make x the subject gives:

x = xL,i + ∆x
∆y (y − yi).

Let x = xL,i+1 and y = yi + 1 then

xL,i = xL,i + ∆x
∆y (yi + 1− yi) = xL,i + ∆x

∆y

The value of ∆x
∆y is constant for all points along that edge so can be pre-calculated prior to looping through

the scanlines and is updated when the polygon edge that intersects the scanline changes. The interpolating
equations are

xL = xL + ∆xL, (17a)
xR = xR + ∆xR, (17b)

∆xL = xp − xq
yp − yq

, (17c)

∆xR = xr − xs
yr − ys

, (17d)

where p, q and r, s are the indices of the upper and lower vertices for the left and right-hand edges
respectively. Recall from section 1.4 on page 7 that it is customary to label vertices in an anti-clockwise
direction so for figure 2.12, p = 2, q = 0, r = 2 and s = 1. This means for an n-sided polygon, for the
left edges we have q = p + 1 unless p = n where we use q = 0. Similarly, for the right edges, s = r − 1
unless r = 0 where we use s = n. This can be represented using the following case statements

q =
{
p+ 1, p < n,

0, otherwise,
(18a)

s =
{
r − 1, r > 1,
n, otherwise.

(18b)

Dr Jon Shiach 29 Maths of Graphics and Virtual Environments

Chapter 2. Rasterisation Back to Table of Contents

Algorithm 5 Scanline filling algorithm
function DrawPolygon(R, (x0, . . . , xn), (y0, . . . , yn), fill colour)

Initialise p and r to the index of the smallest y polygon vertex
Initialise q and s using equations (18a) and (18b)
Initialise xL ← xp and xR ← xr
Calculate ∆xL and ∆xR using equations (17c) and (17d)
for y = min(y) . . .max(y) do . Loop through scanlines

for x = round(xL) . . . round(xR) do . Loop across pixels in the current scanline
R(y, x)← fill colour

end for
if y = yq then . left edge changes

Update p← q
Update q using equation (18a)
Recalculate ∆xL for new left edge using equation (17c)

end if
if y = ys then . right edge changes

Update r ← s
Update s using equation (18b)
Recalculate ∆xR for new right edge using equation (17d)

end if
Recalculate xL ← xL + ∆xL and xR ← xR + ∆xR using equations (17a) and (17b)

end for
return R

end function

The result of using the scanline algorithm to draw a polygon can be seen in figure 2.13.

Figure 2.13: Polygon drawn using the scanline filling algorithm.

Dr Jon Shiach 30 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 2. Rasterisation

Example 6 Use the scanline filling algorithm to draw the polygon shown on the raster below.

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9
9

The vertex with the smallest y co-ordinate is at (5, 2) so we initialise xL = xR = 5 and y = 2. The
left-hand edge joins with the vertex at (2, 4) so ∆xL = 2− 5

4− 2 = −1.5 (remember that we are assuming
vertices are listed in the anti-clockwise direction). The right-hand edge joins with the vertex at (7, 8) so
∆xR = 5− 7

2− 8 = 0.33.

y = 2, xL = 5, xR = 5, ∴ illuminate (5, 2)
y = 3, xL = 5− 1.5 = 3.5, xR = 5 + 0.33 = 5.33, ∴ illuminate (4, 3) to (5, 3)
y = 4, xL = 3.5− 1.5 = 2, xR = 5.33 + 0.33 = 5.67, ∴ illuminate (2, 4) to (6, 4).

Now we have reached the end vertex of the left-hand edge so we move to the next edge which has endpoints
at (2, 4) and (7, 8) so ∆xL = 7− 2

8− 4 = 1.25.

y = 5, xL = 2 + 1.25 = 3.25, xR = 5.67 + 0.33 = 6, ∴ illuminate (3, 5) to (6, 5),
y = 6, xL = 3.25 + 1.25 = 4.5, xR = 6 + 0.33 = 6.33, ∴ illuminate (5, 6) to (6, 6),
y = 7, xL = 4.5 + 1.25 = 5.75, xR = 6.33 + 0.33 = 6.67, ∴ illuminate (6, 7) to (7, 7),
y = 8, xL = 5.75 + 1.25 = 7, xR = 6.67 + 0.33 = 7, ∴ illuminate (7, 8).

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9
9

Dr Jon Shiach 31 Maths of Graphics and Virtual Environments

Chapter 2. Rasterisation Back to Table of Contents

2.5 Texture Mapping
Texture mapping is the process of mapping a two-dimensional image onto a three-dimensional surface by
transforming colour data so it conforms to the surface plot. It allows us to apply a texture, such as bumps
or wood grain to a surface without performing the geometric modelling necessary to create a surface with
these textures. The image that is mapped to a surface is called a texture and is a raster containing an
array of pixels called textels. The colour of a textel will determine the colour of a pixel in the raster array.

Definition 14. A texture map is a raster image that is to be mapped onto a polygon in the display raster.

Definition 15. A textel is a pixel in a texture map.

Texture mapping allows the dimensions of the colour data array to be different from the data defining
the surface plot. You can apply an image of arbitrary size to any surface. The texture colour data is
interpolated so that it is mapped to the entire surface. Texture mapping is an incredibly powerful addition
to a computer graphics library, as we can render simple shapes, flat polygons, and make them appear as
realistic objects in a scene.

(a) texture (b) display

Figure 2.14: Texture mapping applies an image to a polygon in the raster.

2.5.1 Texture space
The texture space is the space in which the texture exists. It is a two-dimensional space with horizontal
and vertical axes are denoted by u and v respectively where u, v ∈ [0, 1] (figure 2.15). The texture map
will fill the texture space so that the bottom left-hand corner of the texture is at (0, 0) and the top right-
hand corner of the texture is at (1, 1). The co-ordinates of a textel (U, V) corresponding to the texture
space co-ordinates (u, v) for a ty × tx texture map is calculated in a similar way to pixel co-ordinates in
equations (6a) and (6b)

U = bu txc, (19a)
V = b(1− v)tyc, (19b)

0 10

1

u

v

Figure 2.15: The texture space.

Dr Jon Shiach 32 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 2. Rasterisation

2.5.2 Applying a texture map

Consider figure 2.16 where the texture on the left is applied a polygon in the display raster on the right
defined by the vertices (x0, y0), (x1, y1), (x2, y2) and (x3, y3) which correspond to the vertices of the
texture space (u0, v0), (u1, v1), (u2, v2) and (u3, v3) respectively. Any transformation that is applied to
the polygon should be accounted for by the texture mapping.

0 10

1

u

v

(u0, v0) (u1, v1)

(u2, v2)(u3, v3)

(uL, vL)

(uR, vR)

(u, v)

(a) texture space

y
x

(x0, y0)

(x1, y1)

(x2, y2)

(x3, y3)

(xL, y) (xR, y)(x, y)

(b) display raster

Figure 2.16: Scanlines in the texture and display rasters.

Using a scanline algorithm, we loop through each horizontal row of pixels in the polygon and calculate
the co-ordinates of the scan extrema pixels (xL, y) and (xR, y). This is done by interpolating between the
vertices of the appropriate edge, for example in figure 2.16, xL is interpolated between x3 and x0 and xR
is interpolated between x3 and x2. The points in the texture space corresponding to the scan extrema,
(uL, vL) and (uR, vR), are calculated by interpolating between the vertices of the texture corresponding
to the vertices in the display raster. The colour of the pixel (x, y) along the scanline is determined by
interpolating between (uL, vL) and (uR, vR) in the texture.

The co-ordinates of the scan extrema on the polygon are calculated using the scanline algorithm where we
loop through each horizontal row of pixels in the polygon and determine the co-ordinates of the pixels on
the far left and right of the row.

2.5.3 Calculating the scan extrema in the texture space

As the co-ordinates of the scan extrema in the display raster changes, so should the co-ordinates of the scan
extrema in the texture space. Since the texture fills the uv space where u, v ∈ [0, 1] then the scan extrema
for the texture will always trace along the boundary of the texture space. Initially, the scan extrema in
the texture space will be the vertex corresponding to the vertex in the display raster with the smallest y
co-ordinate. The texture space co-ordinates of the scan extrema are then calculated by interpolating along
the edges of the texture corresponding the edges of the polygon.

Consider the texture and polygon in figure 2.16. The polygon vertex at (x3, y3) corresponds to the texture
vertex (u3, v3) so the initial values of the scan extrema in the texture space are uL = uR = 0 and
vL = vR = 1. Since the left-hand scan extrema will have a y co-ordinate between y3 and y0 then the
texture space co-ordinates (uL, vL) range between (u3, v3) and (u0, v0) in the same span, therefore the

Dr Jon Shiach 33 Maths of Graphics and Virtual Environments

Chapter 2. Rasterisation Back to Table of Contents

change in the uL and vL for moving down to the next scanline are

∆uL = u3 − u0
y3 − y0

= 0,

∆vL = v3 − v0
y3 − y0

= 1
y3 − y0

.

Doing similar for the right-hand scan extrema

∆uR = u3 − u2
y3 − y2

= 1
y3 − y2

,

∆vR = v3 − v2
y3 − y2

= 0.

Note that one of ∆uL or ∆vL will be 0 since the edge of the texture is either horizontal or vertical (and
similar for ∆uR and ∆vR). When the polygon edges that intersect the scanline changes, the edge of
the texture that the extrema is on will also change. For example, for the polygon in figure 2.16 when
y0 < y < y2 the point (uR, vR) is on the right-hand texture edge and the values of ∆uR and ∆vR change
to

∆uR = 0,

∆vR = 1
y2 − y1

.

The general interpolating equations for the scan extrema points are

aL = aL + ∆aL, (20a)
aR = aR + ∆aR, (20b)

∆aL = ap − aq
yp − yq

, (20c)

∆aR = ar − as
yr − ys

, (20d)

where a denotes either x, u or v and p, q and r, s are the indices of the upper and lower vertices for the
left and right-hand edges respectively.

2.5.4 Interpolating along the scanline
Once the scan extrema in the screen and texture space have been calculated, we initialise u and v to uL and
vL respectively before looping across the pixels in the scanline between xL and xR and the corresponding
pixels in the texture space between (uL, vL) and (uR, vR). The textel co-ordinates are calculated using
equations (19a) and (19b) the the colour of the textel is assigned to the pixel in the display raster. Since
the x co-ordinate will go between xL and xR, the u and v co-ordinates in the texture space must go
between (uL, vL) and (uR, vR) in the same span, the interpolating equations are

a = a+ ∆a, (21a)

∆a = aR − aL
xR − xL

, (21b)

where a denotes either u or v.

2.5.5 Algorithm
The algorithm used to apply a texture map is given in algorithm 6. The function uses inputs of the raster
array R, texture map T and the pixel co-ordinates of the polygon (x0, . . . xn) and (y0, . . . , yn). The results
of a MATLAB function for this algorithm is shown in figure 2.17.

Dr Jon Shiach 34 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 2. Rasterisation

Algorithm 6 Texture mapping algorithm
function TextureMapper(R, T , (x0, . . . , xn), (y0, . . . , yn))

Initialise (u0, v0)← (0, 0), (u1, v1)← (1, 0), (u2, v2)← (1, 1) and (u3, v3)← (0, 1)
Initialise p and r to the index of the smallest y polygon vertex
Initialise q and s using equations (18a) and (18b)
Initialise xL ← xp, uL ← up, vL ← vp, xR ← xr, uR ← ur and vR ← vr
Calculate ∆xL, ∆uL, ∆vL , ∆xR, ∆uR and ∆vR using equations (20c) and (20d)
for y := ymin . . . ymax do . Loop through scanlines

Initialise u← uL, v ← vL
Calculate ∆u and ∆v using equation (21b)
for x := xL . . . xR do . Loop across pixels in the current scanline

Calculate U and V using equations (19a) and (19b)
R(y, x)← T (V,U)
Calculate u and v using equation (21a)

end for
if y = yp then . left edge changes

p← q
Update q using equation (18a)
Recalculate ∆xL, ∆uL and ∆vL for new left edge using equation (20c)

end if
if y = yr then . right edge changes

r ← s
Update s using equation (18b)
Recalculate ∆xR, ∆uR and ∆vR for new right edge using equation (20d)

end if
Recalculate xL, uL, vL, xR, uR and vR using equations (20a) and (20b)

end for
return R

end function

(a) texture (b) raster

Figure 2.17: Texture mapping onto a polygon in the display raster.

Dr Jon Shiach 35 Maths of Graphics and Virtual Environments

Chapter 2. Rasterisation Back to Table of Contents

Example 7 A 2× 2 textel texture is to be mapped to the display raster shown in figure 2.18. The vertex
with pixel co-ordinates (2, 4) corresponds to the point (0, 0) on the texture map.

(i) For each scanline in the polygon, calculate the scan extrema co-ordinates for the display raster and
the texture map.

(ii) For each pixel across the scanline, calculate the texture space co-ordinates.

(iii) Copy the display raster and shade in the pixels with the corresponding colour from the texture map.

v

u00

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1
(a) Texture

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

(b) Display raster

Figure 2.18: Texture mapping example

(i) The vertex with the smallest y co-ordinate is at (6, 1) with corresponds to the texture map co-
ordinates (0, 1). We initialise xL = xR = 6, y = 1, uL = uR = 0 and vL = vR = 1 and calculate

∆xL = 6− 2
1− 4 = −1.33, ∆uL = 0− 0

1− 4 = 0, ∆vL = 1− 0
1− 4 = −0.33,

∆xR = 6− 8
1− 6 = 0.4, ∆uR = 0− 1

1− 6 = 0.2, ∆vR = 0− 0
1− 6 = 0.

The scan extrema values for the next few scanlines are

y xL uL vL xR uR vR

1 6 0 1 6 0 1
2 4.67 0 0.67 6.4 0.2 1
3 3.33 0 0.33 6.8 0.4 1
4 2 0 0 7.2 0.6 1

We have reached the end of the left-hand edge so we need to recalculate ∆xL, ∆uL and ∆vL. The
upper and lower vertices for the new left edge have co-ordinates (2, 4) and (4, 8) in the display raster
and (0, 0) and (1, 0) in the texture map, so we have

∆xL = 2− 4
4− 8 = 0.5, ∆uL = 0− 1

4− 8 = 0.25, ∆vL = 0− 0
4− 8 = 0.

The scan extrema values for the next few scanlines are

y xL uL vL xR uR vR

5 2.5 0.25 0 7.6 0.8 0
6 3 0.5 0 8 1 1

Dr Jon Shiach 36 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 2. Rasterisation

We have reached the end of the right-hand edge so we need to recalculate ∆xR, ∆uR and ∆vR.
The upper and lower vertices for the new right edge have co-ordinates (8, 6) and (4, 8) in the display
raster and (1, 1) and (1, 0) in the texture map, so we have

∆xR = 8− 4
6− 8 = −2, ∆uR = 1− 1

6− 8 = 0, ∆vR = 1− 0
6− 8 = −0.5.

The scan extrema values for the next few scanlines are

y xL uL vL xR uR vR

7 3.5 0.75 0 6 1 0.5
8 4 1 0 4 1 0

(ii) For y = 1: xL = xR = 6, uL = uR = 0, vL = vR = 1 so we have a single texture space point at
(0, 1).

For y = 2: xL = 5, xR = 6, uL = 0, vL = 1, uR = 0 and vR = 1 so

∆u = 0.2− 0
6− 5 = 0.2, ∆v = 1− 0.67

6− 5 = 0.33,

and the texture space co-ordinates are (0, 0.67), (0.2, 1)

For y = 3: xL = 3, xR = 7, uL = 0, vL = 0.33, uR = 0.4 and vR = 1 so

∆u = 0.4− 0
7− 3 = 0.1, ∆v = 1− 0.33

7− 3 = 0.17,

and the texture space co-ordinates are (0, 0.33), (0.1, 0.5), (0.2, 0.67), (0.3, 0.84) and (0.4, 1).

For y = 4: xL = 2, xR = 7, uL = 0, vL = 0, uR = 0.6 and vR = 1 so

∆u = 0.6− 0
7− 2 = 0.12, ∆v = 1− 0

7− 2 = 0.2,

and the texture space co-ordinates are (0, 0), (0.12, 0.2), (0.24, 0.4), (0.36, 0.6), (0.48, 0.8) and
(0.6, 1).

For y = 5: xL = 3, xR = 8, uL = 0.25, vL = 0, uR = 0.8 and vR = 0 so

∆u = 0.8− 0.25
8− 3 = 0.11, ∆v = 1− 0

8− 3 = 0.2,

and the texture space co-ordinates are (0.25, 0), (0.36, 0.2), (0.47, 0.4), (0.58, 0.6), (0.69, 0.8) and
(0.8, 1).

For y = 6: xL = 3, xR = 8, uL = 0.5, vL = 0, uR = 1 and vR = 1 so

∆u = 1− 0.5
8− 3 = 0.1, ∆v = 1− 0

8− 3 = 0.2,

and the texture space co-ordinates are (0.5, 0), (0.6, 0.2), (0.7, 0.4), (0.8, 0.6), (0.9, 0.8) and (1, 1).

For y = 7: xL = 4, xR = 6, uL = 0.75, vL = 0, uR = 1 and vR = 0.5 so

∆u = 1− 0.75
6− 4 = 0.13, ∆v = 0.5− 0

6− 4 = 0.25,

and the texture space co-ordinates are (0.75, 0), (0.88, 0.25) and (1, 0.5).

For y = 7: xL = xR = 4, uL = uR = 1 and vL = vR = 0 so we have a single texture space point at
(1, 0).

Dr Jon Shiach 37 Maths of Graphics and Virtual Environments

Chapter 2. Rasterisation Back to Table of Contents

(iii)

v

u

y = 1

y = 2

y = 3

y = 4
y = 5 y = 6 y = 7 y = 8

(a) Texture
0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

(b) Display raster

Figure 2.19: Texture mapping example: interpolating in the texture space.

Dr Jon Shiach 38 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 2. Rasterisation

2.6 Perspective corrected texture mapping
Consider figure 2.20 where a texture map of an X texture has been mapped to a polygon that have been
rotated about the y-axis and projected onto the screen space using perspective projection so that the
right-hand edge that is further away appears smaller. The white diagonal lines should appear to be straight
lines on the texture mapped polygon, but in this case they appeared curved. The reason for this is that
the depth of the pixels in the polygon have not been taken into account.

(a) texture (b) linear texture map

Figure 2.20: Texture mapping of a simple ‘×’ texture demonstrating the ‘bulging’ that is expe-
rienced when using linear texture mapping.

To correct our texture mapper we need to consider the relationship between the view space co-ordinates and
the display raster co-ordinates when perspective projection has been applied. The diagram in figure 2.21
shows a polygon defined by the view space co-ordinates (x0, y0, z0) and (x1, y1, z1) when viewed from
above (down the y-axis). Applying perspective projection will give the screen space co-ordinates (x′0, y′0, f)
and (x′1, y′1, f) that defines the polygon in the screen space. Note that the depth co-ordinate or all values
along the projected polygon is z = f so using the screen space co-ordinates alone does not provide us with
any information about the depth of the polygon.

x

z

projection plane
(x0, y0, z0)

(x1, y1, z1)

(x′0, y′0, f) (x′1, y′1, f) f

Figure 2.21: Perspective projection of a polygon onto the viewing plane.

To take the depth of the polygon into account we need to find a relationship between the x and y screen
space co-ordinates and the z co-ordinate in the view space. Using the polygon in figure 2.21, the x co-
ordinate of points on the line joining the vertices (x0, y0, z0) and (x1, y1, z1) in the view space can be

Dr Jon Shiach 39 Maths of Graphics and Virtual Environments

Chapter 2. Rasterisation Back to Table of Contents

calculated using

x = mz + c. (22)

for some scalar values m and c. The perspective projection of the x view space co-ordinate is given in
equation (38)) which is

x′ = f

z
x,

which can be transposed to give
x = z

f
x′.

Substituting this expression into equation (22) results in
z

f
x = mz + c

Making z the subject provides the relationship between the x co-ordinate in the screen space and the z
co-ordinate in the world space.

z = cf

x− fm
(23)

Since x is in the denominator the z co-ordinate in the view space does not change in a linear fashion as
the x′ co-ordinate in the projected screen space changes. This causes the bulging of the texture mapped
polygon seen in figure 2.20. However, what if we consider the reciprocal of equation (23)

1
z

= x− fm
cf

,

then we have a linear function of the variable x. Therefore we can divide the vertices of the texture space
by the corresponding z co-ordinates of the vertices in the screen space and interpolate the texture space in
the same way as before. When we need to determine the textel colour we divide the texture co-ordinates
by z and find the textel at

(
u

z
,
v

z

)
. The modified texture mapping algorithm with perspective correction

is shown in algorithm 7.

The results of using the perspective correction can be seen in figures 2.22 and 2.23. Figure 2.22 shows a
simple ‘×’ texture mapped a polygon that is rotated π/6 radians about the y axis. The bulge that was
clearly visible when using the linear texture mapper is not present when using the perspective correction
and the lines appear to be straighter.

(a) linear texture map (b) perspective correction

Figure 2.22: Comparison of linear and perspective texture mapping.

Dr Jon Shiach 40 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 2. Rasterisation

Algorithm 7 Perspective corrected texture mapping algorithm
function TextureMapper(R, T , (x0, . . . , xn), (y0, . . . , yn), (z0, . . . , zn))

Initialise (u0, v0)← (0, 0), (u1, v1)←
(1
z1
, 0
)
, (u2, v2)←

(1
z2
,

1
z2

)
and (u3, v3)←

(
0, 1
z3

)
Initialise p and r to the index of the smallest y polygon vertex
Initialise q and s using equations (18a) and (18b)
Initialise xL ← xp, uL ← up, vL ← vp, zL ← zp, xR ← xr, uR ← ur, vR ← vr and zR ← zr
Calculate ∆xL, ∆uL, ∆vL, ∆zL, ∆xR, ∆uR, ∆vR and ∆zR using equations (20c) and (20d)
for y := ymin . . . ymax do . Loop through scanlines

Initialise u← uL, v ← vL, z ← zL
Calculate ∆u, ∆v and ∆z using equation (21b)
for x := xL . . . xR do . Loop across pixels in the scanline

Calculate U and V using equations (19a) and (19b) with u

z
and v

z
R(y, x)← T (V,U)
Calculate u, v and z using equation (21a)

end for
if y = yp then . left edge changes

Update p← q
Update q using equation (18a)
Recalculate ∆xL, ∆uL, ∆vL and ∆zL for new left edge using equation (20c)

end if
if y = yr then . right edge changes

Update r ← s
Update s using equation (18b)
Recalculate ∆xR, ∆uR, ∆vR and ∆zR for new right edge using equation (20d)

end if
Recalculate xL, uL, vL, zL, xR, uR, vR and zR using equations (20a) and (20b)

end for
return R

end function

The improvement from using perspective texture mapping over linear mapping is less pronounced in fig-
ure 2.23 where the photograph has been mapped to the same polygon. However, the bulging that is seen
using the linear texture mapper is more evident when viewing moving polygons.

(a) linear texture map (b) perspective correction

Figure 2.23: Comparison of linear and perspective texture mapping.

Dr Jon Shiach 41 Maths of Graphics and Virtual Environments

Chapter 2. Rasterisation Back to Table of Contents

2.7 Normal mapping

Another application of texture mapping is the use of normal mapping (also known as bump mapping).
Normal mapping is an attempt to make a flat polygon appear to have three-dimensional artefacts such as
bumps or indentations by applying a texture that is based on normal vectors instead of colours. Lighting
models use the normal vectors to determine the amount of light and shadow that should be seen by the
viewer (we will cover lighting models elsewhere in the unit), so an application of a normal map can enhance
the appearance of a flat polygon.

Consider figure 2.24 where it is necessary to model an uneven surface. We could do this using a number
of different polygons each with their own normal vector. However, using normal mapping we can map the
various normal vectors on to a single polygon which when combined with a lighting model will give the
appearance of the uneven surface.

Figure 2.24: The bumpy surface modelled using 9 polygons (top) can be approximated using a
normal map with just 1 polygon (bottom).

An example of a three-dimensional normal map can be seen in figure 2.26. The normal map shown here
is represented by an RGB colour map where the colour that represents each normal vector depends on the
direction it is pointing. The x direction is represented by red, the y direction green and the z direction
blue figure 2.25. This is why normal maps often appear purple because most normal vectors have a large
z component (these notes are best viewed in colour).

x

y

z

Figure 2.25: Normal maps are represented by a RGB colour map depending on the direction of
the normal vector is pointing.

Dr Jon Shiach 42 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 2. Rasterisation

Figure 2.26: A normal map for a brick wall (Unity Technologies 2017).

The affects of applying a normal map can be seen in figure 2.27 where the brick wall texture map is applied
to a polygon with and without the normal map shown in figure 2.26. The rough surface of the bricks can
be seen by the shadows that appear in the bottom image.

Figure 2.27: A stone wall rendered with just a texture map (top) and with a texture map and a
normal map (bottom) (Unity Technologies 2017)

Dr Jon Shiach 43 Maths of Graphics and Virtual Environments

Chapter 2. Rasterisation Back to Table of Contents

2.8 Exercises
1. Use Bresenham’s algorithm (algorithm 2 on page 17) to determine the co-ordinates of the pixels on

the lines joining the following points:

(a) (2, 1) and (8, 5);

(b) (3, 0) and (7, 6);

(c) (10, 4) and (3, 7);

(d) (9, 8) and (4, 4).

2. Use the midpoint algorithm (algorithm 3 on page 22) to determine the co-ordinates of pixels in the
first-octant (where y ≤ x) of circles centred at (0, 0) with radius:

(a) r = 7;

(b) r = 9;

(c) r = 15.

3. The flood fill algorithm (algorithm 4 on page 25) is used to fill in the region in figure 2.28 starting
at pixel (5, 5). Determine the ordering of the pixels that are filled by the algorithm.

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

Figure 2.28: Flood fill exercise.

Dr Jon Shiach 44 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 2. Rasterisation

4. The scanline algorithm (algorithm 5 on page 30) is used to draw a polygon with the vertices at pixels
(2, 8), (9, 4) and (4, 1). Calculate the co-ordinates of the scan extrema pixels for each scanline in the
polygon.

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

Figure 2.29: Scanline exercise.

The solutions to these exercises can be found on page 135.

Dr Jon Shiach 45 Maths of Graphics and Virtual Environments

Chapter 3

Image Processing

3.1 Antialiasing

We have seen in chapter 2 that when an idealised image is represented using a raster array, lines and edges
of curved and sloping surfaces appear jagged because pixels are square. We can attempt to reduce this
effect by using antialising which is the process of smoothing lines and edges so that they appear less
jagged. Antialiasing is achieved by illuminating the pixels adjacent to the idealised image using a colour
intensity less than that of the colour intensity used for the rasterised image. There are several approaches
used in practice and the most common of these is super sampling antialiasing.

3.1.1 Super sampling antialiasing

Super sampling antialiasing (SSAA) uses a raster which has twice or four times the number of pixels
in the horizontal and vertical directions as the display which is known as a super sample. The scene that
is to be rendered is calculated using the super sample and the colours of each pixel on the display raster
is then calculated by averaging the pixels of the super-sample raster that correspond to the pixel on the
display raster. For example, consider a super-sample raster that is 2× that of the display raster.

0 0.25

0.5 0.1

0.21251
4(0 + 0.25 + 0.5 + 0.1) = 0.2125

super sample display pixel

Figure 3.1: The pixels of the 2× super sample are averaged to give the intensity of the display
pixel.

The effects of super sampling antialiasing can be seen in figure 3.2 where a filled circle drawn on a 100×100
display raster has had 2× super sampling antialiasing applied. The antialiased circle appears less blocky
than the no antialiased circle, however, since we are using 4 times the number of pixels in the super sample
our rasterisation routines such as filling, texture mapping and lighting, require 4 times the operations as a
non-antialiased scene.

47

Chapter 3. Image Processing Back to Table of Contents

(a) No antialiasing (b) Super sample antialiasing

Figure 3.2: The effects of super sample antialiasing on a filled circle.

3.2 Convolution
Convolution is a common method used in image processing to apply blurring, sharpening, embossing and
edge detection to an image. Given an input image we can apply convolution using a kernel (or filter) on
the input to produce an output image that has the kernel applied.

The convolution of an image array X and an n× n kernel array K where n is odd is denoted using X ∗K
and defined for the element in row i and column j is

[X ∗ Y]ij =
r∑

p=−r

r∑
q=−r

[X]i+p,j+q[K]1+r+p,1+r+q, (24)

where r = n− 1
2 . In other words the kernel array is aligned with elements from the image array centred

at pixel ij. The values of the corresponding elements are multiplied and the sum of the result is the value
of [X ∗K]ij .

Example 8 Calculate the convolution X ∗K for the following image and kernel arrays

X =

4 6 4 3 6
6 5 5 2 4
5 2 3 4 1
4 6 5 3 6
6 3 2 4 6

 , K =

0 1
4 0

1
4 1 1

4
0 1

4 0

 .

Computing the value of [X ∗K]22 gives

[X ∗K]2,2 =
1∑

p=−1

1∑
q=−1

[X]2+p,2+q[K]2+p,2+q

= [X]11[K]11 + [X]12[K]12 + [X]13[K]13 + [X]21[K]21 + [X]22[K]22

+ [X]23[K]23 + [X]31[K]31 + [X]32[K]32 + [X]33[K]33

= 6× 0 + 4× 1
4 + 4× 0 + 6× 1

4 + 5× 1 + 3× 1
4 + 5× 0 + 2× 1

4 + 3× 0

= 9.75

Dr Jon Shiach 48 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 3. Image Processing

X X with K centred on [X]22 X ∗K

−→ =

4 6 4 3 6

6 5 5 2 4

5 2 3 4 1

4 6 5 3 6

6 3 2 4 6

3 6

2 4

4 1

4 6 5 3 6

6 3 2 4 6

4(0) 6(1
4) 4(0)

6(1
4) 5(1) 3(1

4)

5(0) 2(1
4) 3(0)

9.75

Repeating the calculations for the other interior elements of Y gives

X ∗K =

0 0 0 0 0
0 9.75 8.5 6 0
0 6.75 7 6.25 0
0 9.5 8.5 7.75 0
0 0 0 0 0

 .

The pseudo-code for convolution is given in algorithm 8.

Algorithm 8 Convolution
function Convolution(X, K)

Y ← ny × nx × 3 array of zeros . ny and nx are the number of rows and columns in X
r ← n− 1

2 . n is the number of rows and columns in K
for i := 1 + r, . . . , ny − r do . loop through the image pixels

for j := 1 + r, . . . , nx − r do
for k := 1, . . . , 3 do . loop through each primary RGB colour

for p := −r, . . . , r do . loop through the kernel elements
for q := −r, . . . , r do

[Y]i,j,k = [Y]i,j,k + [X]i+p,j+q,k[K]1+r+p,1+r+q
end for

end for
end for

end for
end for
return Y

end function

3.2.1 Handling the edge pixels
We can see from example 8 that it isn’t possible to calculate the convolution for the edge pixels of the
image. We can either ignore these pixels and crop the convoluted image or we can apply on of the following
methods

• Extend – the image array is extended as far as necessary to provide values for the convolution of the
edge pixels. The values of the new extended pixels assume that of the edge pixels.

• Wrap – the image is conceptually wrapped so that the pixels adjacent to the edge are taken from
the opposite side.

• Mirror – the edge of the image is conceptionally mirrored so that attempting to access a pixel outside
of the image will be replaced by a pixel inside the image at the same distance from the edge pixel.

Dr Jon Shiach 49 Maths of Graphics and Virtual Environments

Chapter 3. Image Processing Back to Table of Contents

3.2.2 Box blur

Different kernel filters can be used manipulate images in different ways. One common application is the
blurring of an image or part of an image. The simplest method used to blur an image is called the box
blur where all elements of a kernel have the same value, e.g.,

K =

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 .

If we were to apply this kernel using convolution it would increase the brightness of each pixel by a factor
of 25. Therefore, when designing kernels we need to ensure the elements sum to 1, i.e.,

Kblur = 1
25

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 .

The results from applying a box blur kernel filter can be seen in figure 3.3.

(a) original image (b) box blur

Figure 3.3: The affects of applying a 5× 5 box blur filter to an image.

3.2.3 Gaussian blur

The problem with the box blur is that it applies the blurring over all pixels equally and we do lose some
of the information in the image. Another blurring technique is the Gaussian blur where the elements of
the kernel approximate the Gaussian function (figure 3.4) so that the information from the pixels closer to
the central pixel has more of an effect than pixels further away. This results in a smoothing of the source
image and it useful for cleaning up noisy images.

Dr Jon Shiach 50 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 3. Image Processing

Figure 3.4: Two-dimensional Gaussian curve.

To generate the kernel function consider the Gaussian function for mean µ = 0 and standard deviation σ

G(x) = 1√
2πσ2

e

(
− x2

2σ2

)
.

For a 1× 5 element kernel we can use
x = (−2, 1, 0, 1, 2),

therefore is we let σ = 1
G(x) = (0.054, 0.0242, 0.399, 0.242, 0.054).

To generate a 5× 5 kernel array we calculate

K = G(x)TG(x) =

1.0000 4.4817 7.3891 4.4817 1.0000
4.4817 20.0855 33.1155 20.0855 4.4817
7.3891 33.1155 54.5982 33.1155 7.3891
4.4817 20.0855 33.1155 20.0855 4.4817
1.0000 4.4817 7.3891 4.4817 1.0000

 ,

and rounding to the nearest integer to save computational effort

K =

1 4 7 4 1
4 20 33 20 4
7 33 55 33 7
4 20 33 20 4
1 4 7 4 1

 .

Finally we need to ensure the elements of K sum to 1, therefore

Kgaussian = 1
331

1 4 7 4 1
4 20 33 20 4
7 33 55 33 7
4 20 33 20 4
1 4 7 4 1

 .

The effects of applying the Gaussian blur filter can be seen in figure 3.5.

Dr Jon Shiach 51 Maths of Graphics and Virtual Environments

Chapter 3. Image Processing Back to Table of Contents

(a) original image (b) Gaussian blur

Figure 3.5: The affects of applying a Gaussian blur filter to an image.

3.2.4 Sharpening Images

A common tool used in image manipulation software is the sharpen tool. Given a photograph that is
slightly out of focus the edges around features in the photograph will appear blurred and blend into each
other, sharpening is used to accentuate these edges giving the appearance of a sharper image (this is often
the default ‘enhance’ filter).

original edge highlights sharpened image− =

Figure 3.6: Intensity curves over space for sharpening an image.

To sharpen an image we subtract highlights of the changes in the colour of pixels which accentuates the
edges of objects in the image from the original image (figure 3.6).

The kernel used to detect edges is

Kedge =

0 1 0
1 −4 1
0 1 0

 ,

so subtracting this from the identity kernel (a kernel such that X ∗K = X) gives

Ksharpen = Kidentity −Kedge =

0 0 0
0 1 0
0 0 0

−
0 1 0

1 −4 1
0 1 0

 =

 0 −1 0
−1 5 −1
0 −1 0

 . (25)

The effects of sharpening an image is shown in figure 3.7.

Dr Jon Shiach 52 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 3. Image Processing

(a) original (b) edge highlights

(c) sharpened

Figure 3.7: Sharpening an image.

3.2.5 Embossing

Images can be embossed to accentuate changes in pixel colour by applying convolution using the following
kernel

Kemboss =

−2 −1 0
−1 1 1
0 1 2

 .

The effects of applying this kernel is shown in figure 3.8.

Dr Jon Shiach 53 Maths of Graphics and Virtual Environments

Chapter 3. Image Processing Back to Table of Contents

Figure 3.8: Result of convolution using the embossing kernel.

3.2.6 Edge detection
A common application of image processing requires the detection of edges of objects in a raster image.
The Sobel operator uses convolution to calculate approximations of the colour gradient in the x and y
directions using the following convolutions

Gx = X ∗

1 0 −1
2 0 −2
1 0 −1

 ,
Gy = X ∗

 1 2 1
0 0 0
−1 −2 −1

 .
The gradient approximations are then combined using

G =
√
G2
x +G2

y,

for each pixel. The elements of G are then normalised so they are in the range [0, 255].

The result of applying the Sobel operator is shown in figure 3.9.

Dr Jon Shiach 54 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 3. Image Processing

(a) input image

(b) Sobel operator

Figure 3.9: Edge detection using the Sobel operator on a photograph of Manchester’s central
library.

Dr Jon Shiach 55 Maths of Graphics and Virtual Environments

Chapter 4

Bézier Curves

There are many applications in computer graphics that require smooth curves and surfaces. Examples
include Computer Aided Design (CAD), automobile design, computer generated animation, typefaces,
computer games etc. Bézier curves is a common method used to draw smooth curves.

Definition 16. A polynomial is an mathematical expression involving a sum of variables raised to powers
multiplied by coefficients. The general form of a polynomial is

n∑
i=0

aix
i = a0 + a1x+ a2x

2 + . . .+ anx
n,

where a0, a1, . . . , an are the coefficients of the variable x. It is common practice to write a polynomial in
descending order by the power of the variable, for example,

a3x
3 + a2x

2 + a1x+ a0.

Definition 17. The degree of a polynomial is the highest power of the variables in the polynomial.

Polynomials of degree 1, 2, 3 and 4 are known as linear, quadratic, cubic and quartic polynomials
respectively, for example, consider the following polynomial functions:

f(x) = x+ 1,
g(x) = x2 + x+ 1,
h(x) = x3 + x2 + x+ 1,
i(x) = x4 + x3 + x2 + x+ 1.

Here f(x) has degree 1 and is a linear polynomial function; g(x) has degree 2 and is a quadratic polynomial
function; h(x) has degree 3 and is a cubic polynomial function; and i(x) has degree 4 is a quartic polynomial
function.

Definition 18. Parametric equations are a set of equations that express a series of quantities in terms
of independent variables known as parameters.

For example, the straight line joining two points with co-ordinates (x0, y0) and (x1, y1) can be expressed
using the following parametric equations

x(t) = (1− t)x0 + tx1,

y(t) = (1− t)y0 + ty1,

where t is a parameter in the range t ∈ [0, 1] (i.e., 0 ≤ t ≤ 1). The values of x(t) and y(t) give the
co-ordinates of a point on the line between the two points. Let p0 = (x0, y0) and p1 = (x1, y1) denote
the two points and p = (x, y) denote a point on the line p0 → p1 then

p(t) = (1− t)p0 + tp1 (26)
which is known as the parametric equation of a straight line.

57

Chapter 4. Bézier Curves Back to Table of Contents

Example 9 Calculate the points on the straight line joining the two points with co-ordinates (2, 3) and
(10, 11) using: (i) t = 0; (ii) t = 0.25; (iii) t = 0.5; (iv) t = 1.

(i) p(0) = (1− 0)(2, 3) + 0(10, 11) = (2, 3);

(ii) p(0.25) = (1− 0.25)(2, 3) + 0.25(10, 11) = (4, 5);

(iii) p(0.5) = (1− 0.5)(2, 3) + 0.5(10, 11) = (6, 7);

(iv) p(1) = (1− 1)(2, 3) + 1(10, 11) = (10, 11).

Note that when t = 0 and t = 1 the co-ordinates are the endpoints of the line.

4.1 Bézier curves
A Bézier curve is a parametric curve that is used in computer graphics to draw smooth lines. Named
after Pierre Bézier (1910 – 1999) who used Bézier curves in 1962 whilst working as an engineer at Renault,
it was however Paul de Casteljau who derived them three years earlier whilst working for the rival car
manufacturer Citroën. In addition to engineering applications, Bézier curves are used extensively in 3D
modelling and in particular fonts (figure 4.1).

A Bézier curve is defined by a number of control points that determine the start and end points and the
shape of the curve. The number of control points used also determines the degree of the curve where a
Bézier curve of degree n requires n+ 1 control points to define it. The higher the degree of the curve, the
more turns it can take. In practice, Bézier curves tend to have a degree of no larger than four (quartic)
but mostly degree 3 (cubic) Bézier curves are used.

A major benefit of using Bézier curves is that alignment transformations can be applied to the control
points instead of the points on the curve thereby saving computational effort. For example, the smaller S
in figure 4.1 is drawn by applying scaling and translation transformations to the control points (red circles
and crosses) defining the bigger S.

Figure 4.1: Bézier curves used to draw the character S.

4.1.1 Derivation of a Bézier curve
A degree n Bézier curve is defined by n+ 1 control points (p0,p1, . . . ,pn). Consider the quadratic Bézier
curve defined by the three control points (p0,p1,p2) in figure 4.2.

For a given value of the parameter t, the points that lie on the Bézier curve will depend upon the control
points. When t = 0 and t = 1, the Bézier curve starts and ends at the two outer control points p0 and

Dr Jon Shiach 58 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 4. Bézier Curves

p0

p1

p2

q0

q1

c(t)

Figure 4.2: A quadratic Bézier curve.

p2. For all other values of t, a point on the Bézier curve will lie somewhere along the line q0 → q1 where
q0 and q1 lie somewhere along the lines p0 → p1 and p1 → p2 respectively.

The points q0 and q1 are calculated using the parametric equation of a straight line, equation (26).

q0 = (1− t)p0 + tp1, (27a)
q1 = (1− t)p1 + tp2. (27b)

Note that when t = 0, q0 = p0 and as t increases, q0 gets further away from p0 and closer to p1 until
q0 = p1 when t = 1 (and similar for q1 and the control points p1 and p2). A point on the quadratic
Bézier curve, c(t) = (x, y) lies on the line q0 → q1, i.e.,

c(t) = (1− t)q0 + tq1. (28)

Substituting equations (27a) and (27b) into equation (28) gives:

c(t) = (1− t)((1− t)p0 + tp1) + t((1− t)p1 + tp2)
= (1− t)2p0 + t(1− t)p1 + t(1− t)p1 + tp2

Collecting like terms gives the polynomial function for a point on a quadratic Bézier curve

c(t) = (1− t)2p0 + 2t(1− t)p1 + t2p2. (29)

Example 10 A quadratic Bézier curve is defined by the control points p0 = (1, 2), p1 = (5, 6) and
p2 = (9, 3). The point on the quadratic Bézier curve corresponding to t = 0.25 is calculated using:

c(0.25) = (1− 0.25)2(1, 2) + 2(0.25)(1− 0.25)(5, 6) + 0.252(9, 3)
= (0.5625, 1.125) + (1.875, 2.25) + (0.5625, 0.1875)
= (3, 3.5625).

4.1.2 General form of a Bézier curve
The general form of a degree n Bézier curve defined by the control points pi (where i = 0, 1, . . . , n) is

c(t) =
n∑
i=0

bi,n(t)pi, (30)

where bi,n(t) are called Bernstein polynomials that are defined using

bi,n(t) =
(
n

i

)
ti(1− t)n−i, (31)

and
(n
i

)
is the Binomial coefficient.

Dr Jon Shiach 59 Maths of Graphics and Virtual Environments

Chapter 4. Bézier Curves Back to Table of Contents

Definition 19. The Binomial coefficient is written using
(n
i

)
and is read as “n choose i” since it gives

the number of ways of choosing i items from a set of n items (note that
(n
i

)
is also written as nCi in some

textbooks). The value of the Binomial coefficient is calculating using(
n

i

)
= n!
i!(n− i)! ,

where n! denotes the factorial of n, e.g., n! = n× n− 1× . . .× 2× 1.

An easy way to calculate the Binomial coefficient is to use Pascal’s triangle (figure 4.3) where each value
in the interior of the triangle is the sum of the two values immediately above. The value of

(n
i

)
is the

number in the nth row and ith value along from the left starting the count at 0.

For example, to determine
(3

2
)
we look at the number in the 4th row down and 3rd number across.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

(
3
2

)

Figure 4.3: Pascal’s triangle

Dr Jon Shiach 60 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 4. Bézier Curves

Example 11 Use equation (30) to derive the parameteric equation for a quadratic Bézier curve.

Since we require a quadratic curve, n = 2 and

c(t) =
2∑
i=0

bi,npi = b0,np0 + b1,np1 + b2,np2.

The Bernstein polynomials are

b0,2(t) =
(

2
0

)
t0(1− t)2−0 = (1− t)2,

b1,2(t) =
(

2
1

)
t1(1− t)2−1 = 2t(1− t),

b2,2(t) =
(

2
2

)
t2(1− t)2−2 = t2,

so the quadratic Bézier curve is

c(t) = (1− t)2p0 + 2t(1− t)p1 + t2p2,

which is the same as equation (29).

4.1.3 Behaviour of the Bernstein polynomials

The Bernstein polynomials for a quadratic Bézier curve have been plotted in figure 4.4. When t → 0,
b0,2(t) → 1, b1,2(t) → 0 and b1,2 → 0 so it is only the b0,2(t) term (and therefore the p0 control point)
that has any influence on the Bézier curve. As t increases, the affect that the other Bernstein polynomials
have on the shape of the curve increases while b0,2(t) decreases. When t→ 0.5 it is the b1,2(t) term that
has most influence on the shape of the curve. As t→ 1, b0,2(t) and b1,2(t)→ 0 whereas b2,2(t)→ 1 so it
is only the final control point that has an influence. Note that for all values of t, the Bernstein polynomials
sum to 1.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
b0,2(t)

b1,2(t)

b2,2(t)

t

bi,j(t)

Figure 4.4: The Bernstein polynomials for a quadratic Bézier curve.

Similar behaviour can be seen in figure 4.5 that shows the Bernstein polynomials for a cubic Bézier curve
with the exception that there are now four Bernstein polynomials.

Dr Jon Shiach 61 Maths of Graphics and Virtual Environments

Chapter 4. Bézier Curves Back to Table of Contents

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
b0,3(t)

b1,3(t) b2,3(t)

b3,3(t)

t

bi,j(t)

Figure 4.5: The Bernstein polynomials for a cubic Bézier curve.

4.1.4 Expressing Bézier curves in matrix form
For convenience, Bézier curves are written in matrix form

c(t) =
(
p0 p1 · · · pn−1 pn

)
M

tn

tn−1

...
t
1

 ,

where pi are the co-ordinates of the control points expressed as column vectors andM is an (n+1)×(n+1)
matrix. For example, consider the quadratic Bézier curve

c(t) = (1− t)2p0 + 2t(1− t)p1 + t2p2.

Expanding out the brackets gives

c(t) = (t2 − 2t+ 1)p0 + (−2t2 + 2t)p1 + t2p2,

so the quadratic Bézier curve expressed in matrix form is

c(t) =
(
p0 p1 p2

) 1 −2 1
−2 2 0
1 0 0

t2t

1

 . (32)

Note that each column of M contains the coefficients of t2, t and 1 that are multiplied by the control
points.

Example 12 Use equation (32) to calculate the point on a quadratic Bézier curve defined by the control
points p0 = (1, 2), p1 = (5, 6) and p2 = (9, 3) when t = 0.25.

c(0.25) =
(

1 5 9
2 6 3

) 1 −2 1
−2 2 0
1 0 0

0.252

0.25
1

=
(

1 5 9
2 6 3

)0.5625
0.3750
0.0625

=
(

3
3.5625

)
.

Therefore c(0.25) = (3, 3.5625).

Dr Jon Shiach 62 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 4. Bézier Curves

4.1.5 Properties of Bézier curves
Bézier curves have the following properties:

• a Bézier curve begins at point p0 and ends at point pn;

• a Bézier curve is a straight line if and only if it is possible to draw a straight line through all of the
control points;

• the start and end of a Bézier curve is tangential to the start and end section of the control polygon;

• a Bézier curve can be split into two Bézier curves;

• a Bézier curve is contained within its control polygon. This is known as the convex hull property
(figure 4.6).

p0

p1 p2

p3

c(t)

Figure 4.6: The Bézier curve is contained within its control polygon.

Dr Jon Shiach 63 Maths of Graphics and Virtual Environments

Chapter 4. Bézier Curves Back to Table of Contents

4.1.6 MATLAB code

The program in listing 4.1 defines four control points in the array P, uses the function quadratic_bezier
to calculate the points on the Bézier curve and plots the results shown in figure 4.7.

Listing 4.1: MATLAB function to calculate the points on a quadratic Bézier curve.� �
clear

% Define control points
P = [0.1, 0.5, 0.9 ;

0.1, 0.8, 0.4];

% Calculate Bezier curve
C = bezier (P);

% Plot Bezier curve and control points
plot(P(1, :), P(2, :), ’ro -’, ’markerfacecolor ’, ’r’)
hold on
plot(C(1, :), C(2, :), ’b-’)
hold off

axis ([0, 1, 0, 1])
xlabel (’x ’, ’fontsize ’, 16, ’interpreter ’, ’latex ’)
ylabel (’y ’, ’fontsize ’, 16, ’interpreter ’, ’latex ’)
legend (’control points ’, ’quadratic Bezier curve ’, ’fontsize ’, 12, ’interpreter ’, ’

latex ’)

function C = bezier (P)

t = linspace (0, 1, 100);
M = [1, -2, 1 ; -2, 2, 0 ; 1, 0, 0];
T = [t.^2 ; t ; t.^0];
C = P * M * T;

end� �

Figure 4.7: A quadratic Bézier curve.

A MATLAB function that calculates a cubic Bézier curve (code not shown) has been used to draw different
curves as shown in figure 4.8. Unlike the quadratic curve, a cubic curve can exhibit two changes of direction.

Dr Jon Shiach 64 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 4. Bézier Curves

Figure 4.8: Cubic Bézier curves.

4.1.7 Drawing shapes using Bézier curves

Bézier curves can be used to draw shapes by joining the last point of one curve to the first point of the
next. For example, consider figure 4.9 where a shape is defined using 4 quadratic Bézier curves.

(0,−1)

(0, 0)

(1, 0)

(1, 1)(0, 1)(−1, 1)

(−1, 0)
1

23

4

Figure 4.9: A shape defined using 4 quadratic Bézier curves.

Dr Jon Shiach 65 Maths of Graphics and Virtual Environments

Chapter 4. Bézier Curves Back to Table of Contents

The control points that define each curve are given below

P1 =
(

0 0 1
−1 0 0

)
, P2 =

(
1 1 0
0 1 1

)
, P3 =

(
0 −1 −1
1 1 0

)
, P4 =

(
−1 0 0
0 0 −1

)
.

Since we will want to apply transformations to our shape we need to use homogeneous co-ordinates and
for convenience we can combined all 4 sets of control points into a single matrix

P = (P1, P2, P3, P4) =

 0 0 1 1 1 0 0 −1 −1 −1 0 0
−1 0 0 0 1 1 1 1 0 0 0 −1
1 1 1 1 1 1 1 1 1 1 1 1

The Bézier curves are calculated using each set of 3 columns from P are the control points.

The MATLAB program in listing 4.2 defines the control points for this shape and calculates each quadratic
Bézier curves and stores the co-ordinates in a single array C1. The control points are rotated anti-clockwise
by π

4 and translated by (2, 1) resulting giving another set of control points stored in the array Q that define
another shape. The Bézier curves using the control points in Q are calculated and are stored in the array
C2. The two shapes are plotted and the result shown in figure 4.10.

Listing 4.2: MATLAB program that uses Bézier curves to draw shapes.� �
% Define control points (using homogeneous co - ordinates)
P = [0, 0, 1, 1, 1, 0, 0, -1, -1, -1, 0, 0 ;

-1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, -1 ;
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1];

% Calculate Bezier curves
C1 = [bezier (P(1:2 , 1:3)), bezier (P(1:2 , 4:6)), ...

bezier (P(1:2 , 7:9)), bezier (P(1:2 , 10:12))];

% Rotate and translate control points
R = [cos(pi /4) , -sin(pi /4) , 0 ;

sin(pi /4) , cos(pi /4) , 0 ;
0, 0, 1];

T = [1, 0, 2 ;
0, 1, 1 ;
0, 0, 1];

Q = T * R * P;

% Calculate Bezier curves for the transformed shape
C2 = [bezier (Q(1:2 , 1:3)), bezier (Q(1:2 , 4:6)), ...

bezier (Q(1:2 , 7:9)), bezier (Q(1:2 , 10:12))];

% Plot shapes
hold on
plot(C1(1, :), C1(2, :), ’b’)
plot(C2(1, :), C2(2, :), ’b’)
hold off
axis equal

function C = bezier (P)

M = [1, -2, 1 ;
-2, 2, 0 ;
1, 0, 0];

t = linspace (0, 1, 100);
T = [t.^2 ; t ; t.^0];
C = P * M * T;

end� �
Dr Jon Shiach 66 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 4. Bézier Curves

Figure 4.10: Shapes drawn using Bézier curves.

Dr Jon Shiach 67 Maths of Graphics and Virtual Environments

Chapter 4. Bézier Curves Back to Table of Contents

4.2 Bézier surfaces

The concept of Bézier curves can be extended to three dimensions to create a smooth curved surface called
a Bézier surface. Let Px, Py and Pz be (n+ 1)× (n+ 1) matrices containing the x, y and z co-ordinates
of the control points, i.e.,

Px =

x00 x01 · · · x0n
x10 x11 · · · x1n
...
xn0 xn1 · · · xnn

 , Py =

y00 y01 · · · y0n
y10 y11 · · · y1n
...
yn0 yn1 · · · ynn

 , Pz =

z00 z01 · · · z0n
z10 z11 · · · z1n
...
zn0 zn1 · · · znn

 .

then the co-ordinates of the points on a Bézier surface are calculated using

X(u, v) =
n∑
j=0

(
n∑
i=0

bi,n(u)[Px]ij

)
bj,n(v), (33a)

Y (u, v) =
n∑
j=0

(
n∑
i=0

bi,n(u)[Py]ij

)
bj,n(v), (33b)

Z(u, v) =
n∑
j=0

(
n∑
i=0

bi,n(u)[Pz]ij

)
bj,n(v). (33c)

where X, Y and Z are matrices containing the x, y and z co-ordinates of a point on the Bézier surface
and u, v ∈ [0, 1] (i.e., similar to the values of t for a Bézier curve). The surface is only guaranteed to pass
through the four control points at the corners. Multiple Bézier surfaces can be tessellated to form complex
three-dimensional objects (e.g., the Utah teapot shown in figure 4.12).

Similar to Bézier curves, a Bézier surface can be written in matrix form as:

X(u, v) =
(
un un−1 · · · u 1

)
·M · Px ·M ·

vn

vn−1

...
v
1

 , (34)

where M is an (n + 1) × (n + 1) matrix for the Bézier curve, e.g., equation (32). For example, the x
co-ordinates of the points on a quadratic Bézier surface are calculated using

X(u, v) =
(
u2 u 1

) 1 −2 1
−2 2 0
1 0 0

x00 x01 x02
x10 x11 x12
x20 x21 x22

 1 −2 1
−2 2 0
1 0 0

v2

v
1

 ,

and similar for Y (u, v) and Z(u, v).

Two plots showing 16 random control points and the corresponding Bézier surface are shown in figure 4.11

Dr Jon Shiach 68 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 4. Bézier Curves

(a) control points (b) Bézier surface

Figure 4.11: Bézier surface generated using random control points.

The control points for the Utah teapot and the cubic Bézier surfaces that they define are shown in
figure 4.12. Note that the plot of the control points does not look realistic, when Bézier surfaces are
applied the image looks like an actual teapot.

(a) control points (b) Bézier surfaces

Figure 4.12: The control points for the Utah teapot and with Bézier surfaces applied.

Dr Jon Shiach 69 Maths of Graphics and Virtual Environments

Chapter 4. Bézier Curves Back to Table of Contents

4.3 Exercises
1. A quadratic Bézier curve is defined by the control points p0 = (1, 1), p1 = (6, 8) and p2 = (9, 2).

Calculate the co-ordinates of the points on the Bézier curve using the following values. Copy out the
axes below and plot the Bézier curve and control polygon.

(a) t = 0.2;

(b) t = 0.4;

(c) t = 0.6;

(d) t = 0.8.

x

y

00 1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

2. (a) Derive the parametric polynomial for a cubic Bézier curve using equation (30).

(b) Hence find the matrix M when the cubic Bézier curve is written in matrix form.

3. Using your result from 2(b) or otherwise, sketch the cubic Bézier curve defined by the control points
p0 = (1, 1), p1 = (3, 9), p2 = (9, 1) and p3 = (6, 9).

x

y

00 1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

Dr Jon Shiach 70 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 4. Bézier Curves

The solutions to these exercises can be found on page 138.

Dr Jon Shiach 71 Maths of Graphics and Virtual Environments

Chapter 5

Hidden Surface Removal

When rendering a scene in three-dimensions the overall impression of realism is much improved if we remove
the parts of the object that cannot normally be seen by the viewer. This removes the wireframe impression
of the object and makes it look more solid. Consider the drawing of the Utah teapot in figure 5.1. The
image on the left shows the object drawn using all of the polygons that define the object whereas the image
on the right is the same object with those polygons that should not be seen by the viewer removed. This
eliminates the wireframe appearance of the object and the object appears to the viewer to be solid.

Figure 5.1: The Utah teapot drawn with and without hidden surfaces.

In this chapter we will be concentrating on hidden surface removal techniques in order to make the drawing
of three-dimensional objects appear more realistic. Much of the advances in rendering of three-dimensional
objects have been spearheaded by the Computer Aided Design (CAD) and computer games industries
where accurate and realistic images important. Due to the complexity of three-dimensional scenes in
modern computer games, movies and virtual environments, a method for removing hidden surfaces must
be computationally efficient in order to be of practical use. We will consider three methods of hidden
surface removal: back-face culling, the painter’s algorithm and Binary Space Partitioning (BSP).

5.1 Defining objects
Three-dimensional objects are constructed using a set of polygons called faces that are used to form the
surface of the object. Each face is defined by a set of vertices, the co-ordinates of which are expressed
using homogeneous co-ordinates (homogeneous co-ordinates will be covered in Dr O’Brien’s part of the
unit).

The vertices and faces of an object are representing in two arrays V and F . V is a 4× n array where n is

73

Chapter 5. Hidden Surface Removal Back to Table of Contents

the total number of vertices of an object. The x, y and z object space co-ordinates are contained in the
first three rows and the fourth row contains 1’s (note that some people write V as a n×4 matrix where the
x, y and z co-ordinates are contained in the first three columns of V). Each row of the F array contains
the column number (or row number if V is a n× 4 array) of the vertices that make up each face.

x

y

z

1

2

3

4

5

6

7

8

Figure 5.2: Cube object defined in the object space.

5.1.1 The vertex array
Consider the cube object shown in figure 5.2 which is defined in the object space using a right-handed
co-ordinate system. The eight vertices that define the object are labelled 1 through 8. We want the centre
of the object to have co-ordinates (0, 0, 0) so if we consider a cube with side lengths of 2 the V array is (a
cube like this is known as a unit cube because all of the vertex co-ordinates are 1 or −1)

V =

−1 1 1 −1 −1 1 1 −1
−1 −1 1 1 −1 −1 1 1
−1 −1 −1 −1 1 1 1 1
1 1 1 1 1 1 1 1

 .
Here the first column of V contains the co-ordinates of vertex 1, the second column contains the co-
ordinates of vertex 2 and so on. Note that in this cube object each vertex is shared by three different faces
of the object.

5.1.2 The face array
Looking at the cube object in figure 5.2 along the y axis the face of the object we can see is defined by
vertices 1, 2, 5 and 6. Objects are defined such that the normal vectors to each face is pointing away from
the centre of the object.

Definition 20. The normal vector of a plane is a vector that points in a perpendicular direction to the
plane. In R3 the normal vector can be computed using the cross produce, i.e., if a and b are any two
vectors that lie on a plane then the normal vector n is

n = a × b.

A plane has two normal vectors pointing in opposite directions so we list the vertices of a face in anti-
clockwise order when looking towards the centre of the object. This ensures that when using a right-hand
co-ordinate system the following method returns an outward pointing normal vector

n = (vi+1 − vi)× (vi+2 − vi+1). (35)

Therefore the row of the face array that defines the face we can see when looking along the y-axis is
(1, 2, 6, 5).

Dr Jon Shiach 74 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 5. Hidden Surface Removal

The face array for the cube object in figure 5.2 will have 6 rows, one for each of the faces, and 4 columns
since each face is a square, i.e.,

F =

1 2 6 5
2 3 7 6
3 4 8 7
4 1 5 8
4 3 2 1
5 6 7 8

.

5.1.3 Calculating the normal vector for a face
Given an object defined using a vertex array V and a face array F then the normal vector for face i is
calculated using

ni = (v[F]i,j+1 − v[F]i,j)× (v[F]i,j+2 − v[F]i,j+1), (36)

where vk is the kth column of V .

Example 13 Calculate the normal vector for the first face in the cube object defined in sections 5.1.1
and 5.1.2.

The first row of the face array is (1, 2, 6, 5) so

v[F]1,1 = v1 = (−1,−1,−1), v[F]1,2 = v2 = (1,−1,−1), v[F]1,3 = v6 = (1,−1, 1).

Therefore the normal vector for this face is

n = ((1,−1,−1)− (−1,−1,−1))× ((1,−1, 1)− (1,−1,−1)) = (2, 0, 0)× (0, 0, 2) = (0,−4, 0).

Note that n points in the negative y direction.

5.2 Back-face culling
The back-face culling method is the simplest of the hidden surface removal methods. It is used to
remove the hidden surfaces in closed objects where the outward facing polygons are used. As the name
suggests, back-face culling only renders the polygons that are front facing and ignores (culls) the back
facing polygons.

Consider figure 5.3 that shows a closed object defined by six polygons A through F which are all outward
facing (the normal vectors point away from the centre of the object). When the camera is located at point
p, only be able the front facing polygons A, B and C should be visible whereas the back facing polygons
D, E and F should be obscured.

p

vA
vB
vC

E nE

F

nF

A

nA

BnB

C

nC

D

nD

Figure 5.3: Back-face culling only renders the polygons that are facing the camera.

Dr Jon Shiach 75 Maths of Graphics and Virtual Environments

Chapter 5. Hidden Surface Removal Back to Table of Contents

Polygons are determined to be front facing if the angle between the viewing vector pointing from the camera
position to the polygon and the surface normal is greater than π/2 (figure 5.4). Using the definition of the
dot product

a · b = ‖a‖‖b‖ cos(θ),

and the fact that cos(θ) < 0 when θ > π/2, then a polygon is front facing if

v · n < 0,

else the polygon is back facing.

n

v
θ

(a) front facing polygon: θ > π/2

n

vθ

(b) back facing polygon: θ < π/2

Figure 5.4: The angle between the viewing vector v and the surface normal n can be used to
determine whether a polygon is front or back facing.

The back-face culling method is presented in algorithm 9. The function uses inputs of the face array for
all the faces in the world space F and the position of which the world space is to be viewed p (note that p
is usually (0, 0, 0) when back-face culling is applied to the view space). The function returns Ffront which
is the face array for all front facing polygons.

Algorithm 9 The back-face culling algorithm
function BackFaceCulling(V , F , p)

for each face in F do
Calculate the view vector v
Calculate the outward pointing normal vector for face, n
if v · n < 0 then

add face to Ffront
end if

end for
return Ffront

end function

Figure 5.5 shows the Utah teapot drawn using back-face culling to remove the hidden surfaces. The view
from the front shows that the teapot appears solid and realistic. Rotating the teapot so that the camera
position is to the left shows that the polygons that construct the back of the teapot (from the point of
view of the camera) are not rendered.

Dr Jon Shiach 76 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 5. Hidden Surface Removal

(a) frontview (b) side view

Figure 5.5: The Utah teapot drawn using back-face culling to remove the hidden surfaces.

Back-face culling has been applied to the screen space depiction of a virtual world seen and the before and
after result is shown in figure 5.6. Note that back-face culling does not take into account whether surfaces
are hidden by other objects in a scene.

(a) before back-face culling (b) after back-face culling (opaque polygons)

Figure 5.6: Before and after affects applying back-face culling to the screen space.

Example 14 A cube object in the view space is defined by the following vertex and face arrays. Given
that the view space is viewed from position (0, 0, 0), determined which faces are front facing

V =

5 6 7 6 5 6 7 6
3 2 3 4 3 2 3 4
2 2 2 2 4 4 4 4
1 1 1 1 1 1 1 1

 , F =

1 2 6 5
2 3 7 6
3 4 8 7
4 1 5 8
4 3 2 1
5 6 7 8

.

Face 1:

n = ((6, 2, 2)− (5, 3, 2))× ((6, 2, 4)− (6, 2, 2)) = (1,−1, 0)× (0, 0, 2) = (−2,−2, 0),
v = (5, 3, 2),

∴ v · n = (5, 3, 2) · (−2,−2, 0) = −16 =⇒ front facing.

Dr Jon Shiach 77 Maths of Graphics and Virtual Environments

Chapter 5. Hidden Surface Removal Back to Table of Contents

Face 2:

n = ((7, 3, 2)− (6, 2, 2))× ((7, 3, 4)− (7, 3, 2)) = (1, 1, 0)× (0, 2, 0) = (2,−2, 0),
v = (6, 2, 2),

∴ v · n = (6, 2, 2) · (2,−2, 0) = 8 =⇒ back facing.

Face 3:

n = ((6, 4, 2)− (7, 3, 2))× ((6, 4, 4)− (6, 4, 2)) = (−1, 1, 0)× (0, 0, 2) = (2, 2, 0),
v = (7, 3, 2),

∴ v · n = (7, 3, 2) · (2, 2, 0) = 20 =⇒ back facing.

Face 4:

n = ((5, 3, 2)− (6, 4, 2))× ((5, 3, 4)− (5, 3, 2)) = (−1,−1, 0)× (0, 0, 1) = (−2, 2, 0),
v = (6, 4, 2),

∴ v · n = (6, 4, 2) · (−2, 2, 0) = −4 =⇒ front facing.

Face 5:

n = ((7, 3, 2)− (6, 4, 2))× ((6, 2, 2)− (7, 3, 2)) = (1,−1, 0)× (−1,−1, 0) = (0, 0,−2),
v = (6, 4, 2),

∴ v · n = (6, 4, 2) · (0, 0,−2) = −4 =⇒ front facing.

Face 6:

n = ((6, 2, 4)− (5, 3, 4))× ((7, 3, 4)− (6, 2, 4)) = (1,−1, 0)× (1, 1, 0) = (0, 0, 2),
v = (5, 3, 4),

∴ v · n = (5, 3, 4) · (0, 0, 2) = 8 =⇒ back facing.

5.3 Painter’s algorithm
The painter’s algorithm is another solution to the hidden surface removal problem and is used to remove
hidden surfaces in static polygons. It is used more commonly for the rendering of walls that construct a
level of a computer game as opposed to dynamic objects that may move due to interactions with the player
or objects in the environment. The name derives from the steps used by an oil painter in painting a scene
where due to the opacity of the oil paints, the background is painted first, followed by the middle ground
with the elements in the foreground painted last figure 5.7.

Figure 5.7: The steps that an oil painter uses to paint a scene (Zapyon 2011).

The same principle can be used in computer graphics to remove hidden surfaces. Consider the plan view
of the three walls in figure 5.8. Wall A is the furthest from the camera position, wall B is the next nearest

Dr Jon Shiach 78 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 5. Hidden Surface Removal

and wall C is the closest to the camera position. Therefore, using the painter’s algorithm the walls should
be rendered in the order, A, B then C (figure 5.9).

A

B

C

Figure 5.8: Wall A is partially obscured by walls B and C.

A A B A BC

Figure 5.9: The view from the camera position after drawing polygons A (left), B (centre) and
C (right).

Painter’s algorithm is written in algorithm 10 where the inputs to the function are F which is the face array
for the faces in the world space (usually after back-face culling has been applied) and V are the screen
space vertex co-ordinates.

Algorithm 10 Painter’s algorithm
function PaintersAlgorithm(F , V)

Sort F by in descending order by the z co-ordinate of the closest vertex
for each face in sorted F do

Draw face
end for

end function

The results of applying painters algorithm to the front facing polygons seen in the right-hand plot in
figure 5.6 is shown in figure 5.10. Note that the objects closer to the view now obscure the objects further
away and hidden surfaces have been removed from the scene.

Dr Jon Shiach 79 Maths of Graphics and Virtual Environments

Chapter 5. Hidden Surface Removal Back to Table of Contents

Figure 5.10: The affects of the painter’s algorithm applied to the front facing polygons from
figure 5.6.

5.3.1 Overlapping polygons
The painters algorithm is a simple and effective method for removing hidden surfaces. However, the method
can fail when attempting to render overlapping polygons. Consider the three polygons in figure 5.11. Since
each polygon is both in front and behind of another polygon, painter’s algorithm would fill in this case.
The solution is to split up polygons that overlap in this way.

Figure 5.11: Overlapping polygons will cause the painter’s algorithm to fail.

Dr Jon Shiach 80 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 5. Hidden Surface Removal

5.4 Binary Space Partitioning
Binary Space Partitioning (BSP) is a method that is used to determine the rendering order of polygons
that make up static objects of a virtual world (walls, buildings etc.). BSP was first described in the 1960s
by Schumaker et al. (1969) to improve the rendering of three-dimensional scenes using computer graphics.
However, it wasn’t until the early 1990s that BSP became widely used in the computer game industry to
improve the performance of rendering three-dimensional scenes. id Software’s Doom (Carmack and Romero
1993) and Quake (Abrash and Carmack 1996) are perhaps the most famous games to use BSP but most
3D games since have used the method

Definition 21. A convex set is a set of polygons where every polygon is facing every other polygon. A
polygon A is said to be facing another polygon B if the surface normal vector is pointing towards B.

Consider the two spaces in figure 5.12. The set of polygons on the left is a convex set since every polygon
in the set has its normal vector pointing to every other polygon in the set. The set of polygons on the right
is not a convex set since one of the polygons has its normal vector pointing away from the other polygons
in the set.

(a) convex set (b) non-convex set

Figure 5.12: The difference between a convex and non-convex set.

Definition 22. A hyperplane in n-dimensional space is an (n−1)-dimensional object that is used to bisect
the space to form two new subspaces.

subspaces

hyperplane

space

Figure 5.13: A hyperplane divides a space into two subspaces.

Definition 23. An atomic subspace is a subspace where all polygons contained within the subspace form
a convex set.

Dr Jon Shiach 81 Maths of Graphics and Virtual Environments

Chapter 5. Hidden Surface Removal Back to Table of Contents

The aim of binary space partitioning is to divide the world space into atomic subspaces by inserting
hyperplanes along polygons. By definition, the polygons that form each atomic subspace do not obscure
each other so can be rendered at the same time. The order that each atomic subspace is rendered is
calculated to ensure that hidden surfaces are removed in a similar way to the painters algorithm.

Binary space partitioning is primarily used in the rendering of static polygons in the world space. For exam-
ple, consider a computer game that requires the player to navigate a three-dimensional virtual environment.
The polygons that construct the walls, floors, buildings etc. are known prior to the player navigating the
map and remain fixed in place. So we can perform binary space partitioning before the scene needs to be
rendered in order to save computational effort whilst the game is being played.

5.4.1 BSP trees
When using binary space partitioning we need to record each subdivision and the polygons that are contained
within each subspace. To this a data structure known as a binary tree is used. A binary tree consists of
nodes that are joined by edges where each node has a single input edge and at most two output edges
(figure 5.14). The node attached to the other end of the input edge is called the parent node and the
node attached to the other end of the output edges are called child nodes. For example in figure 5.14, A
is the root node with two child nodes B and C. B is the parent of nodes D and E and C is the parent of
nodes F and G. Nodes D, E, F and G have no child nodes so are therefore leaf nodes.

A

B

D E

C

F G

Figure 5.14: A simple binary tree

Consider the space containing the three polygons A, B and C in figure 5.15. The set {A,B,C} is not an
atomic subspace since none of the three polygons face each other. If we subdivide the space by inserting
a polygon on the same plane that polygon A lies on then, since the normal vector for polygon A points to
the right, polygon B is in the front subspace and polygon C is in the back subspace. We represent this
subdivision as a binary tree with polygon A contained in the root node, polygon B contained in the left
child node and polygon C contained within the right child node figure 5.15. The choice of which node to
insert the hyperplane along is arbitrary and we can select any polygon in the set, however, there may be
optimality considerations (see section 5.4.2).

A
C

B

A

B C

Figure 5.15: Polygons in the front subspace are listed in the left child node and polygons in the
back subspace are listed in the right child node in a BSP tree.

If two or more polygons exist on the same plane and they are facing in the same direction then they are

Dr Jon Shiach 82 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 5. Hidden Surface Removal

said to be coincident and can be treated as one polygon in the BSP process. It is advantageous to use
coincident polygons as the ones which a hyperplane is inserted since it reduces the number of polygons we
have to deal with. For example, consider figure 5.16 where polygons A and B are coincident. Polygon C
is in the front subspace and polygon D is in the back subspace.

A B

C

D

A, B

C D

Figure 5.16: Coincident polygons are group into one node in the BSP tree.

This procedure continues until all subspaces contain convex sets, i.e., all subspaces are atomic subspaces.
The algorithm for the generation of a BSP tree is given below:

Algorithm 11 BSP-tree generating algorithm
function BSPTree(polyList)

if polyList is a convex set then
Exit function

else
Choose a polygon (or set of coincident polygons) from polyList and set as the current node
List all of the polygons wholly in front of the current node in the left child node.
List all of the polygons wholly behind the current node in the right child node.
Split any polygons that are intersected by the hyperplane that the current node lies on and place

the two nodes in the appropriate child node.
BSPTree(left child node)
BSPTree(right child node)

end if
end function

Example 15 Construct a BSP tree for the space shown below.

A

B

C

D

E

We start with the set of polygons {A,B,C,D,E} which is clearly not a convext set. From this set we can
select polygon D, place it the root node and insert a hyperplane along it. Polygons A and C are wholly in
front of the hyperplane so are listed in the left child node and polygon B is wholly behind the hyperplane
so is listed in the right child node. Polygon E intersects the hyperplane and is split into polygons E1 and
E2. Polygon E1 is wholly in front of the hyperplane so is listed in the left child node and E2 is wholly
behind the polygon so it is listed in the right child node.

Dr Jon Shiach 83 Maths of Graphics and Virtual Environments

Chapter 5. Hidden Surface Removal Back to Table of Contents

A

B

C

D

E1E2 D

A,C,E1 B,E2

We now look at the left child node and repeat the algorithm for the set {A,C,E1}. This is not a convex
set so we choose polygon C and insert a hyperplane along it. Polygon A is wholly behind the hyperplane
so is listed in the left child node and polygon E1 is wholly in front of the hyperplane so is listed in the right
child node. Since both child nodes only contain one polygon they must both be convex sets.

A

B

C

D

E1E2

D

C

E1 A

B,E2

The next step is to look the right child node of D which contains the set {B,E2}. This is not a convex
set so we choose polygon B and insert a hyperplane along it. The only other polygon is E2 which is wholly
behind the hyperplane so is listed in the right child node. Since this child node only contains one polygon
is it a convex set.

A

B

C

D

E1E2

D

C

E1 A

B

E2

All nodes of the BSP tree contain convex sets so the tree generation algorithm terminates. The final tree
now contains the information needed to determine the visibility ordering of the polygons using painter’s
algorithm (section 5.4.4).

5.4.2 Optimising BSP trees

During the BSP process, the splitting of polygons into two separate polygons causes more work in the
long run since more polygons will need to be processes when it comes to clipping, rendering, lighting and
textures etc. However, in practical cases splitting is a requirement of the hidden surface removal process.
Consider a virtual world where selecting a particular root node will cause each polygon to be split into two.
If a different root node was chosen that causes no splitting of polygons, then this BSP tree would contain
half the number polygons than the case where each polygon was split. Compound this over a number of
steps and the number of polygons in the virtual world increases by a factor of 2n.

Consider the BSP tree from example 15. In the first step a hyperplane was inserted along polygon D
causing polygon E to be split into two. However, if we inserted hyperplanes along polygons B, E, D and
A then we can generate a BSP tree where no polygons were split, i.e.,

Dr Jon Shiach 84 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 5. Hidden Surface Removal

A

B

C

D

E

B

E

D

A

C

Clearly an efficient BSP tree will result in the fewest number of splittings possible but how is this done?
One method is to check all of the polygons in a space to see how many polygons the hyperplane intersects
and then select the polygon that results in the fewest splittings. If there are n polygons in a virtual world
then testing each one at every stage of the BSP process will mean checking n! polygons. So consider a
very simple virtual world constructed using 20 polygons . Checking every polygon at every stage would
mean checking 2.43× 1018 polygons (2.43 billion billion polygons) (Abrash 2001). If it takes a computer
1 microsecond to check each one, then the BSP tree will take 77,146 years to generate. Obviously it is
impractical to check every polygon.

In practice, a random sample is taken of the polygons in a subspace. Each polygon from the sample is
checked to see how many polygons intersect with its plane and the polygon with the lowest number of
intersections is chosen as the next hyperplane. A study to examine the increase in the number of polygons
produced by splitting depending on the number of polygons sampled from the subspace produced the graph
shown in figure 5.17.

Figure 5.17: The % increase in polygons for different sample sizes.

When a sample of only one polygon was chosen, on average the number of polygons present in the final
BSP tree was 190% of the number of original polygons due to splitting. This number drops as the number
in the sample is increased. Note that after a sample size of five, the number of polygons produced by
splitting does not decrease and therefore we only need to test five polygons in each subspace.

5.4.3 Balanced trees
Another consideration when performing BSP is whether the BSP tree is balanced or unbalanced. A binary
tree is said to be balanced if it has the same number of nodes down each branch and a tree is said to be

Dr Jon Shiach 85 Maths of Graphics and Virtual Environments

Chapter 5. Hidden Surface Removal Back to Table of Contents

unbalanced if this is not the case.

A

B

D E

C

F G

(a) balanced tree

A

B

D

E

C

(b) unbalanced tree

Figure 5.18: Balanced and an unbalanced tree.

When it comes to determining the rendering order of polygons, it is quicker to use a balanced tree than an
unbalanced tree. To create a balanced tree, the polygon selected for the hyperplane must have a similar
number of polygons in front and behind. In creating a balanced tree, the number of splittings that occur
may increase. There is usually a tradeoff between the number of splittings that are allowed to occur and
how balanced the BSP is.

5.4.4 Visibility ordering using BSP trees
So far we can construct a BSP tree by performing subdivision of a space and splitting the polygons where
necessary and optimise it using various criteria. You might be forgiven in thinking how does BSP help
when rendering three-dimensional scenes? If you consider what is actually happening with a BSP tree, we
are determining which polygons are in front of the others. Therefore BSP trees lend themselves well to a
technique similar to the painter’s algorithm where we render the furthest polygons from the camera before
the nearer ones. The problem with the painter’s algorithm is that every time the camera position changes,
the distances of each polygon have to be recalculated. Therefore this is not a suitable method to use in
computer games where the camera position is commonly controlled by the player and changing often. BSP
trees provide the visibility ordering for a scene depending on the camera position relative to the root node
of the tree.

Consider the scene shown in figure 5.19 which is viewed from the viewpoint at p. p is in the back space
to the root node D so all of the polygons that are in the front space of D (A, C and E1) are further away
from p than the polygons in the back space of D (B and E2). Notice that polygons A, C and E1 are
all contained in the left sub-tree of D and polygons B and E2 are contained in the right sub-tree. So the
rendering order of polygons using the painter’s algorithm can be determined using a BSP tree.

A

B

C

D

E1
E2

p

D

C

E1 A

B

E2

Figure 5.19: The polygons are viewed from the viewpoint at p.

The visibility ordering of polygons in a BSP tree are determined using an in-order tree walk presented in

Dr Jon Shiach 86 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 5. Hidden Surface Removal

algorithm 12.

Algorithm 12 BSP-tree traversal
function BSPTreeTraversial(node)

if node is a leaf node then
Draw the polygons in node

else if viewing position is in the front subspace of node then
BSPtreetraversial(right child node)
Draw the polygons in node
BSPtreetraversial(left child node)

else if viewing position is in the back subspace of node then
BSPtreetraversial(left child node)
Draw the polygons in node
BSPtreetraversial(right child node)

end if
end function

The advantage of using BSP trees is that once a tree has been generated for a virtual world it can be used
to determine the rendering order for any position of the viewpoint.

Example 16 Using the BSP tree for the polygons given below, determine the order that the polygons are
drawn when the viewed from (i) p and (ii) q

A

B

C

D

E1
E2

p

q D

C

E1 A

B

E2

(i) Starting at the root node D.

• D is not a leaf node so we check whether p is in the front or back subspace of D.

• p is in the back subspace of D so we move to the left child node C and restart.

• C is not a leaf node and p is in the back subspace (just) of C so we move to the left child
node E1 and restart.

• E1 is a leaf node so we render it and return its parent node C

• We render C and move to the right child node A.

• A is a leaf node so we render it and return to the parent node C.

• C has already been rendered so we return to the parent node D.

• We render D and move to the right child node B (because we have already considered the left
child node).

• B is not a leaf node and p is in the front subspace of B so we move to the right child node E2
and restart.

• E2 is a leaf node so we render it and return to its parent node B.

• We render B.

Dr Jon Shiach 87 Maths of Graphics and Virtual Environments

Chapter 5. Hidden Surface Removal Back to Table of Contents

• All nodes have been rendered so the tree walk terminates. The rendering order of the polygons
which results in all hidden surfaces being removed is

{E1}, {C}, {A}, {D}, {E2}, {B}.

(ii) Starting at the root node D

• D is not a leaf node and q is in the front subspace of D so we move to the right child node B
and restart.

• B is not a leaf node and q is in the back subspace of B so we attempt to move to the left child
node.

• B does not have a left child node so we return to B, render it and then move to the right child
node E2.

• E2 is a leaf node so we render it and return to the parent node B.

• B has already been rendered so we return to the parent node D.

• We render D and move to the left child node C.

• C is not a leaf node and q is in the front subspace of C so we move to the right child node A
and restart.

• A is a leaf node so we render it and return to the parent node C.

• We render C and move to the left child node E1.

• E1 is a leaf node so we redner it.

• All nodes have been rendered so the tree walk terminates. The rendering order of the polygons
which results in all hidden surfaces being removed is

{B}, {E2}, {D}, {A}, {C}, {E1}.

Dr Jon Shiach 88 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 5. Hidden Surface Removal

5.5 Exercises
1. A trapezoid object is defined in the view space by the following vertex and face arrays. Determine

which faces are front facing and which faces are back facing when viewed from the origin at (0, 0, 0).

V =

10 11 9 10
4 5 6 5
2 2 2 3
1 1 1 1

 , F =

3 2 1
1 2 4
2 3 4
1 4 3

2. Two levels of a computer game are to be rendered using BSP trees to help in hidden surface re-

moval. Construct a BSP tree for each level using hyperplanes to subdivide the level until only atomic
subspaces remain. You may assume that all polygons are inward facing.

A

B
C

D

E
F

G

H

I

J

K

L

M

N

O

P
Q

R

S
T

p1 p2

p3

(a)

A

B

C

D
E

F

G
H

I

J
K

L

M
N

O

P

Q

R

S

T

U

V

W

X

Y

Z

AA

p1

p2 p3

p4

(b)

3. Using your BSP trees from question 2, determine the rendering order of the polygons for each level
when viewed from the positions denoted by pi.

The solutions to these exercises can be found on page 139.

Dr Jon Shiach 89 Maths of Graphics and Virtual Environments

Chapter 6

Clipping

Consider the graphics pipeline shown in figure 6.1. After the world space has been aligned to the viewer
position and direction of view the next step is to remove polygons that should not be visible to the viewer,
i.e., polygons that are behind the viewer or outside their peripheral vision. Some polygons will lie partially
inside and partially outside this visible region and need to split where they intersect with the boundary of
the visible region. This process is known as clipping.

Object space

World space

View space

Screen space

Raster

Display

Scale, rotate and translate objects

Translate and rotate

Project and clip to viewable region

Remove hidden surfaces, apply lighting and textures

Update display

Figure 6.1: The graphics pipeline.

6.1 The viewing frustum

The viewing frustum is the region of the view space that should be visible to the viewer. Any polygon
that is outside of the viewing frustum is ignored from this stage on-wards in the graphics pipeline. Polygons
that lie partially outside of the viewing frustum need to be clipped to the edges of the frustum. If the
screen is defined by a rectangular region on the near viewing plane (i.e., the projection plane) then the
viewing frustum is bounded by the screen, the projection of the screen onto the far viewing plane and the
four sides of the screen projected between the near and far viewing planes (figure 6.2).

91

Chapter 6. Clipping Back to Table of Contents

near viewing plane

far viewing plane

y

x

z

Figure 6.2: The viewing frustum.

To determine the polygons that are behind the viewer we can simply check whether the view space z
co-ordinate is negative. For the remaining polygons, we determine which are contained within the viewing
frustum, which polygons need to be clipped to the edges and which polygons can be ignored entirely, each
polygon is checked against the six planes bounding the viewing frustum. If a polygon lies entirely in front
of each of the six planes then that polygon is included in all subsequent calculations. If a polygon lies
entirely behind one of the bounding planes then the polygon lies completely outside of the viewing frustum
and removed from all subsequent calculations. If a polygon is split by one or more of the bounding planes
then the polygon needs to be clipped to those planes.

For example, the view space representation of a virtual world shown in is plotted along with a viewing
frustum in figure 6.3. Here the house object on the far left of the viewers field of view needs to be clipped
to the left frustum edge and the church object needs to be clipped to the far edge.

(a) view space (b) plan view

Figure 6.3: Plots of the camera space with the viewing frustum shown.

6.1.1 Perspective projection

The aim of perspective projection is to project a three-dimensional space onto a two-dimensional plane
such that objects that are close to the plane appear larger than objects further away. Consider figure 6.4
where a point in the view space at (x, y, z) is projected onto the viewing plane parallel to the x and y
axes located at distance z = f from the origin. The co-ordinates of the projected point q = (xs, ys, f) are

Dr Jon Shiach 92 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 6. Clipping

determined by calculating the intersection between the viewing plane and the projector line that goes from
the origin to the point in the view space.

z

x, y

p = (x, y, z)

q = (xs, ys, f)

viewing
plane

f

a bo

Figure 6.4: A point in the view space P is projected onto the viewing plane at Ps.

The two triangles oaq and obp are similar therefore

xs
f

= x

z
,

ys
f

= y

z
,

so the screen space co-ordinates are

xs = f

z
x, (37a)

ys = f

z
y. (37b)

6.1.2 Field of view

The field of view (fov) is an angle that determines how much of the view space can be seen on the
screen. Consider figure 6.5 that shows a plan view of the view space viewed looking down the y-axis. The
x co-ordinates of the left and right hand edges of the screen are denoted by ` and r respectively which
depend upon the angle fov and the distance of the viewing plane from the viewer (fnear). The larger the
value of fov the wider the field of view and more of the world space can be seen on screen.

Simple trigonometry is used to calculate the x co-ordinates of the left and right-hand edge of the screen

r = fnear tan
(
fov

2

)
,

` = −fnear tan
(
fov

2

)
= −r.

Dr Jon Shiach 93 Maths of Graphics and Virtual Environments

Chapter 6. Clipping Back to Table of Contents

x

z

r`

fovfnear

ffar

Figure 6.5: The field of view angle determines the width of the viewable area.

6.1.3 Aspect ratio
The fov angle only applies to the horizontal edges of the screen. Consider figure 6.6 that shows the edges
of the screen on the screen space viewed down the z-axis. The y co-ordinates of the top and bottom of the
screen, denoted here by t and b respectively, are determined using ` and r and the width-to-height ratio of
the screen known as the aspect ratio

x

y

screen width

screen height
screen

(`, b)

(r, t)

Figure 6.6: The aspect ratio is the ratio of width-to-height of the screen.

aspect = screen width
screen height = r − `

t− b
.

Since b = −t and ` = −r then

t = r

aspect
.

6.1.4 Transforming the viewing frustum
Determining the intersection between the edges of a polygon and the near and far viewing planes is relatively
simple since they are parallel to the xy plane and the normal vectors to these planes will contain only one
non-zero element (i.e., for the near viewing plane the normal is nfar = (0, 0, 1) and for the far viewing plane
the normal is nnear = (0, 0,−1)). For the four remaining bounding planes this will not be the case since
these are not parallel to any of the x, y or z axes. In order to simplify the clipping process, a co-ordinate
transformation is applied so that the sides of the viewing frustum are parallel to the x, y and z axes.

Dr Jon Shiach 94 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 6. Clipping

If (xs, ys, zs, 1) are the screen space co-ordinates corresponding to a point in the view space with co-
ordinates (x, y, z, 1). The viewing frustum is transformed so that it is a unit square in the screen space,
therefore xs, ys, zs ∈ [−1, 1] (figure 6.7).

z

x

(`, fnear) (r, fnear)

(r, ffar)(l, ffar)

(a) viewing frustum

zs

xs

(−1,−1) (1,−1)

(1, 1)(−1, 1)

(b) transformed viewing frustum

Figure 6.7: A co-ordinate transformation is applied to the viewing frustum to simplify clipping.

To derive the transformation that maps x → xs, consider a point within the viewing frustum where
` ≤ xs ≤ r. A transformation is needed that maps ` → −1 and r → 1 and also takes into account
perspective projection. Since ` = −r then −r ≤ x ≤ r then dividing throughout by r gives

−1 ≤ x

r
≤ 1.

Using equation (37a)

−1 ≤ fnear
r

x

z
≤ 1,

therefore if xs is the perspective projection of x scaled to the screen with edges bounded by ` and r then

xs = fnear
r

x

z
, (38)

and doing similar for ys

ys = fnear
t

y

z
. (39)

As with other transformations such as translation, scaling and rotation, it is convenient to calculate per-
spective projection using matrix multiplication. Using equations equations (38) and (39) the matrix that
performs perspective projection can be expressed using

P =

fnear
r

0 0 0

0 fnear
t

0 0
0 0 a b
0 0 1 0

 (40)

where a and b are constants use to map the z co-ordinate and are determined later. Note that the Cartesian
screen space co-ordinates are computed by dividing the projected co-ordinates by the fourth element, i.e.,

P

x
y
z
1

 =

fnear
r

0 0 0

0 fnear
t

0 0
0 0 a b
0 0 1 0

x
y
z
1

 =

fnear
r

x

fnear
t

y

az + b
z

Dr Jon Shiach 95 Maths of Graphics and Virtual Environments

Chapter 6. Clipping Back to Table of Contents

and dividing by the fourth element z gives

fnear
r

x

z
fnear
t

y

z
az + b

z
1

which the first two elements are xs and ys from equations equations (38) and (39).

The transformation of the zs co-ordinate is given in terms of two undetermined values a and b which when
written as screen co-ordinates is

zs = az + b

z
.

To determine the values of a and b we wish to map z 7→ zs so that z = fnear 7→ −1 and z = ffar 7→ 1.
This gives the following system

afnear + b

fnear
= −1

affar + b

ffar
= 1.

The solution of this system is a = ffar + fnear
ffar − fnear

and b = − 2fnearffar
ffar − fnear

therefore equation (40) becomes

P =

fnear
r

0 0 0

0 fnear
t

0 0

0 0 ffar + fnear
ffar − fnear

− 2fnearffar
ffar − fnear

0 0 1 0

. (41)

The matrix P from equation (41) is the complete transformation that combines perspective projection of
the world space co-ordinates onto the viewing plane and the transformation of the viewing frustum to the
unit square to give the screen space co-ordinates. The affects of applying this transformation can be seen
in figure 6.8. Note how that some of the objects lie partially outside of the unit cube that represents the
visible region, these objects will need to be clipped .

Dr Jon Shiach 96 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 6. Clipping

(a) View space (b) Screen space: front view

(c) Screen space: plan view (d) Screen space: side view

Figure 6.8: Plots of the screen space with the visible region represented by a unit cube.

Dr Jon Shiach 97 Maths of Graphics and Virtual Environments

Chapter 6. Clipping Back to Table of Contents

Example 17 A cube object is defined by the following view space co-ordinate array Vview and a face array
F

Vview =

−2 2 2 −2 −2 2 2 −2
−2 −2 −2 −2 2 2 2 2
4 4 8 8 4 4 8 8
1 1 1 1 1 1 1 1

 , F =

1 2 6 5
2 3 7 6
3 4 8 7
4 1 5 8
4 3 2 1
5 6 7 8

.

The view space is to be projected onto the screen space with a field of view angle fov = 1.5, a width-to-
height screen aspect ratio of 4 : 3 and near and far viewing planes located at z = 2 and z = 10 respectively.
Calculate the screen space co-ordinates of the object such that the viewing frustum is bounded by a unit
cube centred at the origin.

The co-ordinates for the top-right hand corner of the screen on the near projection plane are

r = fnear tan
(
fov

2

)
= 2 tan

(1.5
2

)
= 1.8632,

t = r

aspect
= 1.8632

4/3 = 1.3974,

so the projection matrix is

P =

fnear
r

0 0 0

0 fnear
t

0 0

0 0 ffar + fnear
ffar − fnear

− 2fnearffar
ffar − fnear

0 0 1 0

=

2
1.8632 0 0 0

0 2
1.3974 0 0

0 0 10 + 2
10− 2 −2(2)(10)

10− 2
0 0 1 0

=

1.0734 0 0 0

0 1.4312 0 0
0 0 1.5 −5
0 0 1 0

 .
Applying the projection matrix to Vview gives

P · Vview =

1.0734 0 0 0

0 1.4312 0 0
0 0 1.5 −5
0 0 1 0

−2 2 2 −2 −2 2 2 −2
−2 −2 −2 −2 2 2 2 2
4 4 8 8 4 4 8 8
1 1 1 1 1 1 1 1

=

−2.1469 2.1469 2.1469 −2.1469 −2.1469 2.1469 2.1469 −2.1469
−2.8625 −2.8625 −2.8625 −2.8625 2.8625 2.8625 2.8625 2.8625

1 1 7 7 1 1 7 7
4 4 8 8 4 4 8 8

 .
Divide by the fourth element in each co-ordinate to get the Cartesian screen space co-ordinates

Vscreen =

−0.5367 0.5367 0.2684 −0.2684 −0.5367 0.5367 0.2684 −0.2684
−0.7156 −0.7156 −0.3578 −0.3578 0.7156 0.7156 0.3578 0.3578
0.2500 0.2500 0.8750 0.8750 0.2500 0.2500 0.8750 0.8750

1 1 1 1 1 1 1 1

 .
The affectos of the projection of the view space onto the screen space can be seen in figure 6.9. Note how
the face of the cube furthest from the viewer is smaller than the face that is closest.

Dr Jon Shiach 98 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 6. Clipping

(a) view space (b) screen space

Figure 6.9

Dr Jon Shiach 99 Maths of Graphics and Virtual Environments

Chapter 6. Clipping Back to Table of Contents

6.2 Line clipping

For a given area, known as the clip region, defined as the region that should be visible to the computer
user, we wish to draw all lines that lie within this region, clip any lines that lie partially outside of this clip
region to the edges of the clip region and ignore any lines that lie completely outside of the clip region.

a

b
c

d

e

f

g

h

i

j

clip region

d′

g′

h′

Figure 6.10: Lines are clipped to the clip region.

Consider the diagram shown in figure 6.10. Here the clip region is represented by a rectangle. A suitable
line clipping algorithm should identify the following:

• line a→ b should be drawn as it lies completely within the clip region;

• line c→ d lies partially outside of the clip region so d, the point outside of the clip region, should
be clipped to the top edge at d′ and line c→ d′ is drawn;

• line e→ f lies completely outside of the clip region so is ignored;

• line g→ h lies partially outside of the clip region with both endpoints outside, so g is clipped to g′
and h is clipped to h′ and line g′ → h′ is drawn;

• line i→ j lies completely outside of the clip region and is ignored.

6.3 The Cyrus-Beck algorithm

The Cyrus-Beck algorithm (Cyrus and Beck 1978) uses the intersection between a line and a plane to
determine whether a line requires clipping and for calculating the co-ordinates of the point on where the
line should be clipped to. The perpendicular distance of the start and end points of a line are calculated
and the sign of these distances determine whether the line is in front, crossing or behind an edge of the
clip region.

6.3.1 Calculating the perpendicular distance between a point and a plane

A plane is defined by its normal vector n and a point on the plane p. Let q be an arbitrary point in space
and d be the perpendicular distance from q to the plane (figure 6.11).

Dr Jon Shiach 100 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 6. Clipping

p

n

q

d
θ

Figure 6.11: The distance between a point and a plane.

The geometric definition of a dot product between two vectors a and b is:

a · b = ‖a‖‖b‖ cos(θ)

where θ is the angle between a and b. So the dot product between the normal vector n and the vector
joining p to q is

(q − p) · n = ‖q − p‖‖n‖ cos(θ). (42)

Forming a right-angled triangle where ‖q − p‖ is the length of the hypotenuse and d is the length of the
adjacent side then

cos(θ) = adjacent
hypotenuse = d

‖q − p‖ .

Substituting this expression into equation (42) gives

(q − p) · n = ‖q − p‖‖n‖ d

‖q − p‖ ,

therefore

d = (q − p) · n
‖n‖ . (43)

This expression is simplified further if n̂ is a unit vector then

d = (q − p) · n̂.

6.3.2 Determining when clipping is required
The sign of the perpendicular distance, d, from an end point of a line a to an edge of the clip region can
be used to determine whether a line requires clipping or not:

da

< 0 a is behind the edge,
= 0 a is on the edge,
> 0 a is in front of the edge.

(44)

Let a and b be the start and end points of a line. There are four possible cases that need to be considered
depending on the sign of da and db that are summarised in table 6.1.

Table 6.1: The signs of da and db determine whether clipping is required.

da db a b Action
< 0 < 0 behind behind do not draw a→ b
< 0 ≥ 0 behind in front clip a to a′
≥ 0 < 0 in front behind clip b to b′
≥ 0 ≥ 0 in front in front do nothing

Dr Jon Shiach 101 Maths of Graphics and Virtual Environments

Chapter 6. Clipping Back to Table of Contents

6.3.3 Calculating the intersection between a line and an edge of the clip region
Consider the diagram in figure 6.12 that shows a line a→ b that is clipped to a plane defined by the point
p and normal vector n.

p

n a

b

b′
da > 0

db < 0

Figure 6.12: The line a→ b is clipped to the edge at b′.

The clipped point b′ that lies on the edge has a distance db′ = 0, therefore using equation (43)
0 = (b′ − p) · n̂. (45)

The equation of the line joining a and b is
b′ = a + t(b− a) (46)

where t ∈ [0, 1]. Substituting equation (46) into equation (45) and rearranging gives
0 = (a + t(b− a)− p] · n̂

= (a − p) · n̂ + t(b− a) · n̂
t(a − b) · n̂ = (a − p) · n̂

t = (a − p) · n̂
(a − b) · n̂ ,

which can be written in terms of da and db as

t = da
da − db

. (47)

Equation (47) gives the value of t that can be substituted into equation (46) to give the intersection point
c.

The Cyrus-Beck algorithm for clipping a line to a window edge is given in algorithm 13. The function uses
inputs of the co-ordinates of the endpoints of the line a and b, the normal vector to the window edge n
and the co-ordinates of a point on the window edge p. This function is applied to each widow edge.

Algorithm 13 The Cyrus-Beck algorithm
function LineClipping(a, b, n, p)

Initialise da ← (a − p) · n, db ← (b− p) · n and t← da
da − db

if da < 0 ∧ db < 0 then . Both a and b are behind edge
b← a

else if da > 0 ∧ db < 0 then . b needs clipping to edge
b← a + t(b− a)

else if da < 0 ∧ db > 0 then . a needs clipping to edge
a← a + t(b− a)

end if
return a and b

end function

Dr Jon Shiach 102 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 6. Clipping

Example 18 A line joining the points a = (1, 1) and b = (4, 3) is to be clipped to an edge of a clip region
defined by the normal vector n = (2, 4) and the point p0 = (5, 1).

y

x

a = (1, 1)

b = (4, 3)

p = (5, 1)

b′

n

The distances of a and b from the edge are

da = (a − p) · n = ((1, 1)− (5, 1)) · (2, 4) = −8,
db = (b− p) · n = ((4, 3)− (5, 1)) · (2, 4) = 6.

So a is behind the edge and b is in front. Clipping a to the edge at b′

t = da
da − db

= −8
−8− 6 = 4

7 ,

∴ b′ = a + t(b− a) = (1, 1) + 4
7((4, 3)− (1, 1))

= (1, 1) + 4
7(3, 2)

= 1
7(19, 15) = (2.714, 2.143).

Dr Jon Shiach 103 Maths of Graphics and Virtual Environments

Chapter 6. Clipping Back to Table of Contents

6.4 The Sutherland-Hodgman algorithm
The Sutherland-Hodgman algorithm (Sutherland and Hodgman 1974) is used to clip a polygon to a
clip region as opposed to line clipping seen previously with the Cyrus-Beck algorithm. The polygon to be
clipped is known as the subject polygon and the polygon that represents the clip region is known as the
clip polygon. The clip polygon can be any simple polygon so the Sutherland-Hodgman algorithm is useful
for clipping against complicated shapes.

Consider a subject polygon with n edges defined by the vertex list:

List = {v1,v2, . . . ,vn}.

where vi are the co-ordinates of vertex i. The edges of the subject polygon are checked to see whether
they intersect an edge of the clip polygon by determining whether the endpoints are in front or behind the
edge (using equation (43)). If the polygon edge does intersect then the point of intersection is calculated
and replaces the endpoint that is behind the edge of the clip polygon in the vertex list. If both endpoints
are behind the edge of the clip polygon then these are removed from the vertex list. Once this has been
done for all edges of the clip polygon the final vertex list will define the clipped polygon and can be drawn.

The Sutherland-Hodgman algorithm is shown in algorithm 14.

Algorithm 14 The Sutherland-Hodgman algorithm
function PolygonClipping(subjectPolygon, clipPolygon)

newList← subjectPolygon
for each edge in clipPolygon do

List← newList
clear newList
for each vertex vi in List do

if vi is in front of edge then
add vi to newList
if vi+1 is behind edge then

i←LineClipping(vi,vi+1,nedge,pedge)
add i to newList

end if
else

if vi+1 is in front of edge then
i←LineClipping(vi,vi+1,nedge,pedge)
add i to newList

end if
end if

end for
end for
return newList

end function

Dr Jon Shiach 104 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 6. Clipping

Example 19 Consider the clipping of the polygon to the clip region shown in figure 6.13.

v1

v2

v3

v4

bottom edge

right edge

top edge

left edge

Figure 6.13: Clipping a polygon to a clip region using the Sutherland-Hodgman algorithm.

The vertex list of the subject polygon is

List = {v1,v2,v3,v4}.

Clip to bottom edge:

• All vertices are in front so newList = {v1,v2,v3,v4}

Clip to right edge:

• Set List = newList and clear newList

• v1 is in front so add to newList

• v2 is behind so clip v1 → v2 to v1 → i1 and add i1 to newList

• v2 is behind and v3 is in front so clip v1 → v3 to i2 → v3 and add i2 to newList

• v3 and v4 are in front so add to newList

newList = {v1, i1, i2,v3,v4}

v2

v1

i1

i2

v3

v4

bottom edge

right edge

top edge

left edge

Figure 6.14: Clipping to right edge.

Clip to top edge:

Dr Jon Shiach 105 Maths of Graphics and Virtual Environments

Chapter 6. Clipping Back to Table of Contents

• Set List = newList and clear newList

• v1, i1 and i2 are in front so add to newList

• v3 is behind so clip v2 → v3 to v2 → i3 and add i3 to newList

• v3 is behind and v4 is in front so clip v3 → v4 to i4 → v4 and add to i4 to newList

• v4 is in front so add to newList

newList = {v1, i1, i2, i3, i4,v4}

v1

v2

v3

v4

i1

i2

i3i4

bottom edge

right edge

top edge

left edge

Figure 6.15: Clipping to top edge.

Clip to left edge:

• Set List = newList and clear newList

• v1, i1, i2 and i3 are in front so add to newList

• i4 is behind so clip i3 → i4 to i3 → i5 and add i5 to newList

• v1 is in front so clip v4 → v1 to i6 → v1 and add i6 to newList

newList = {v1, i1, i2, i3, i5, i6}

v1

v2

v3

v4

i1

i2

i3
i6

i5

i4

bottom edge

right edge

top edge

left edge

Figure 6.16: Final clipped polygon.

Dr Jon Shiach 106 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 6. Clipping

The affect of apply the Sutherland-Hodgman algorithm to clip the screen space can be seen in figure 6.17

(a) Front view (b) Plan view

(c) Side view

Figure 6.17: Plots of the screen space clipped to the viewable region using the Sutherland-
Hodgman algorithm.

Dr Jon Shiach 107 Maths of Graphics and Virtual Environments

Chapter 6. Clipping Back to Table of Contents

6.5 The Cohen-Sutherland algorithm
The Cohen-Sutherland algorithm uses logical expressions to determine which endpoints of a line need
to be clipped to which edge of the clip region. The Cohen-Sutherland algorithm can only be applied to
clip regions where the edges are parallel to the horizontal and vertical axes and is often used for windowed
Graphical User Interfaces (GUIs). However, it has many advantages over other clipping methods: trivial
cases that make up the majority of line segments in a scene are accepted or rejected with minimal calculation
and is simple to code and computationally efficient.

Consider the diagram in figure 6.18 that shows a window and the eight surrounding regions. Each of the
four digits are given a value of 1 if the point is above (1st digit), below (2nd digit), right (3rd digit) and
left (4th digit) of the clip window or 0 otherwise

clip window
(xmin, ymin)

(xmax, ymax)

0101 0100 0110

0001 0000 0010

1001 1000 1010

Figure 6.18: Bitcodes used in the Cohen-Sutherland algorithm.

The bitcode for an arbitrary point with co-ordinates (x, y) is generated using the function presented in
algorithm 15.

Algorithm 15 Function for determining a bitcode for the Cohen-Sutherland algorithm
function BitCode(x, y, xmin, ymin, xmax, ymax)

X ← 0000
if y > ymax then

X(1)← 1 . X(n) denotes the nth digit of X
else if y < ymin then

X(2)← 1
end if
if x > xmax then

X(3)← 1
else if x < xmin then

X(4)← 1
end if
return X

end function

The Cohen-Sutherland algorithm uses the bitcodes of the two endpoints of a line to determine whether
clipping is required. To do this it makes use of the bitwise operations AND and OR.

Definition 24. The logical OR operator is denoted by p∨q and returns a 1 if p or q are true, else it returns
0.

Definition 25. The logical AND operator is denoted by p∧ q and returns a 1 only both p and q are true,
else it returns a 0.

Dr Jon Shiach 108 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 6. Clipping

The values of p ∨ q and p ∧ q for all possible combinations of the binary values p and q are listed in the
truth table in table 6.2.

Table 6.2: The truth table for logical OR and AND operators

p q p ∨ p p ∧ q

0 0 0 0
0 1 1 0
1 0 1 0
1 1 1 1

Bitwise operations between two bitcodes apply the logical operators to each corresponding pair of digits to
return another bitcode, e.g., 0110 ∨ 1100 = 1110 and 0110 ∧ 100 = 0100.

The Cohen-Sutherland algorithm is presented in algorithm 16.

Algorithm 16 The Cohen-Sutherland algorithm
function CohenSutherland(a, b, xmin, ymin, xmax, ymax)

while true do
A←BitCode(ax, ay, xmin, ymin, xmax, ymax)
B ←BitCode(bx, by, xmin, ymin, xmax, ymax)
if A ∨B = 0000 then

a→ b does not need to be clipped
return a and b

else if A ∧B 6= 0000 then
a→ b does not enter the clip region so reject line and exit algorithm

else
if A 6= 0000 then

clip a to the edge indicated by the first non-zero digit in A
else

clip b to the edge indicated by the first non-zero digit in B
end if

end if
end while

end function

Dr Jon Shiach 109 Maths of Graphics and Virtual Environments

Chapter 6. Clipping Back to Table of Contents

Example 20 The Cohen-Sutherland algorithm is to be applied to clip the lines to the clip region in
figure 6.19.

a

b
c

d

e

f

g

h

i

j

clip region

d′

g′

h′

I ′

Figure 6.19: Clipping the lines to the clip region using the Cohen-Sutherland algorithm.

• a→ b:

A = 0000,
B = 0000.

A ∨B = 0000 therefore line a→ B is drawn without clipping.

• c→ d:

C = 0000,
D = 1000.

C ∨D = 1000 and C ∧D = 0000 therefore line c→ d needs to be clipped. The first digit of D is
1 so d is clipped to the top edge at d′.

D′ = 0000,

C ∨D′ = 0000 therefore line c→ d′ is drawn without further clipping.

• e→ f :

E = 0001,
F = 1001.

E ∨F = 1001 and E ∧F = 0001 therefore line e→ f does not enter the clip region and is rejected.

• g→ h:

G = 0100,
H = 0010.

G ∨H = 0110 and G ∧H = 0000 therefore line g→ h needs to be clipped. The second digit in G
is 1 so g is clipped to the bottom edge at g′

G′ = 0000.

Dr Jon Shiach 110 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 6. Clipping

G′ ∨H ′ = 0010 and G′ ∧H = 0000 therefore line g′ → h needs to be clipped. The third digit of H
is 1 so h is clipped to the right edge at h′.

H ′ = 0000.

G′ ∨H ′ = 0000 therefore line g′ → h′ is drawn without further clipping.

• Line i→ j

I = 0100,
J = 0010.

I ∨ J = 0110 and I ∧ J = 0000 therefore line i→ j needs to be clipped. The second digit of I is 2
so i is clipped to the bottom edge at i′.

I ′ = 0010.

I ′ ∨ J = 0010 and I ′ ∧ J = 0010 so line i′ → j is rejected (not drawn).

Dr Jon Shiach 111 Maths of Graphics and Virtual Environments

Chapter 6. Clipping Back to Table of Contents

6.6 Exercises
1. A polygon with the homogeneous view space co-ordinates given below is to be projected onto the

screen space defined by a projection plane located at fnear = 4, a far viewing plane at ffar = 20, a
field of view angle of fov = 1.5 and a screen width-to-height aspect ratio of 16 : 9

V =

−2 3 1
−3 −1 2
6 10 8
1 1 1

 .
(a) Determine the projection matrix that is used to project the view space onto to the screen space.

(b) Hence, calculate the screen space co-ordinates for this polygon.

2. Use the Cyrus-Back algorithm to clip the lines joining the following the following points to the clip
region shown in figure 6.20.

(a) (2, 1) and (5, 3);

(b) (1, 4) and (6, 5);

(c) (4, 1) and (4, 6).

x

y

(1, 2)

(6, 1)

(7, 5)

(2, 6)

00 1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

Figure 6.20: Clip region

Dr Jon Shiach 112 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 6. Clipping

3. Use the Sutherland-Hodgman algorithm to clip the polygon to the clip region shown in figure 6.21.

v1

v2

v3

v4

v5

left edge

bottom edge

right edge

top edge

Figure 6.21: The polygon is clipped to the clip region using the Sutherland-Hodgman algorithm.

4. A clip region with four sides parallel to the horizontal and vertical axes is defined by the bottom-left
and top-right co-ordinates (5, 5) and (20, 15) respectively. Use the Cohen-Sutherland algorithm to
clip the lines a→ b, c→ d, e→ f and g→ h to the clip region

a = (1, 6), b = (8, 10), c = (2, 2), d = (21, 4),
e = (15, 2), f = (22, 9), g = (18, 20), h = (23, 14).

The solutions to these exercises can be found on page 140.

Dr Jon Shiach 113 Maths of Graphics and Virtual Environments

Chapter 7

Lighting

The addition of lighting and texture gives visual cues to the geometry of objects, the smoothness of objects,
the position of light sources in relation to objects and the orientation of objects in a scene. Consider
figure 7.1 that shows two renderings of the Utah teapot. The teapot on the left is the three-dimensional
teapot without any kind of lighting model applied. Note that we have no clues to the shape of the teapot.
The teapot on the right is the same object but this time a lighting model has been applied. Note that with
lighting applied we can see the general shape of the teapot and we can determine depth perception.

(a) without lighting (b) with lighting

Figure 7.1: The Utah teapot rendered with and without lighting.

Lighting models fall into two categories: direct illumination models and global illumination models. Direct
illumination models only take into account light coming directly from a light source. Global illumination
models take into account light coming directly from a light source and light reflected off of other objects
(figure 7.2). Global illumination models are much more computationally expensive than direct illumination
models.

Definition 26. Direct illumination is the illumination of an object from light that is only emitted directly
from a light source.

Definition 27. Global illumination is the illumination of an object from light that is emitted from light
sources and reflected off other objects in the scene.

115

Chapter 7. Lighting Back to Table of Contents

direct illumination

object

indirect illumination

object

object

Figure 7.2: Direct and indirect illumination.

7.1 The Phong reflection model

The Phong reflection model (Phong 1975) is a direct illumination model and is the most common
model used to calculate lighting in virtual worlds and computer games. The Phong reflection model uses
a combination of three different types of reflection: ambient reflection, diffuse reflection and specular
reflection.

7.1.1 Ambient reflection

Ambient reflection is the reflection of light that does not come directly from a light source, rather is it
the sum of all light that is reflected off of other surfaces. Consider a dark room with no sources of light
and the curtains drawn. Faint levels of light that are reflected off of other objects illuminate the scene. A
simple model for ambient reflection is to assume that all objects in a scene are illuminated equally. This
may seem an over simplistic assumption, however, if we were to resolve all light reflected off of all objects
(as in global illumination models, e.g., ray tracing) this would be far too computationally expensive to be
of practical use.

In the Phong reflection mode, ambient reflection is modelled using

A = Iaka, (48)

where Ia is the intensity of the ambient illumination and ka is the ambient reflection coefficient. The
value of ka is in the range [0, 1] and is set to give the appropriate amount of ambient light in the scene.
For example, a day time scene may have a value of ka close to 1, whereas a dark underground scene may
have a value of ka close to 0.

The effect of changing the value of the ambient reflection coefficient can be seen in figure 7.3 where the
Utah teapot is rendered rendered using different values of ka.

Dr Jon Shiach 116 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 7. Lighting

(a) ka = 0.25 (b) ka = 0.5

(c) ka = 0.75 (d) ka = 1

Figure 7.3: The Utah teapot rendered using different values of the ambient reflection coefficient.

7.1.2 Diffuse reflection

Diffuse reflection is the reflection of light falling on a rough or uneven surface where light is scattered in
all directions (figure 7.4). To the viewer, a rough surface will look dull when a light is shined on it, this is
because of the scattering of the reflected rays.

surface

incident rays

reflected rays

Figure 7.4: Light rays falling on a rough surface are scattered in all directions.

To model diffuse reflection, Phongs reflection model makes the assumption that all light falling on a surface
will be scattered equally in all directions (figure 7.5). Whilst this may not be strictly true for all surfaces,
it is a fair assumption and adequate for our purposes. Therefore diffuse reflection only depends upon the
angle between the surface normal vector and the light source vector.

Dr Jon Shiach 117 Maths of Graphics and Virtual Environments

Chapter 7. Lighting Back to Table of Contents

n̂
L̂

θ

n̂

L̂

θ

n̂

L̂
θ

n̂

L̂ θ

Figure 7.5: The diffuse reflection model scatters light equally in all directions and is dependent
upon the angle between light source vector L̂ and the surface normal n.

Consider figure 7.5 where θ denotes the angle between the light source vector L̂ and the surface normal
vector n̂. The light will only fall on the surface if θ < π/2. When θ is small the light source vector is close
to the surface normal vector therefore lots of light will be reflected off of the surface. As θ increases, the
amount of light reflected decreases until θ = π/2 where the light source vector is parallel to the surface and
no light is reflected. When θ > π/2 the light source is behind the surface therefore no light is reflected.
To model diffuse reflection, the Phong reflection model uses a cosine function, i.e.,

D = Ipkd max(cos(θ), 0),

where Ip is the intensity of the point light source and kd is the diffuse reflection coefficient. Similar to
ka, the value of kd is in the range [0, 1] and is set according to the diffuse properties of the object being
modelled. The max function is used so that the value of D can not be negative.

To simplify the calculations we can replace the cos(θ) term with a dot product. Recall that the definition
of the dot product between two vectors a and b is

a · b = ‖a‖‖b‖ cos(θ). (49)

Since L̂ and n̂ are unit vectors then we can write

L̂ · n̂ = cos(θ),

Therefore diffuse reflection is modelled using

D = Ipkd max(L̂ · n̂, 0). (50)

The effect of altering the diffuse reflection coefficient can be seen in figure 7.6 that shows the Utah teapot
rendered using different values of kd.

Dr Jon Shiach 118 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 7. Lighting

(a) kd = 0.25 (b) kd = 0.5

(c) kd = 0.75 (d) kd = 1

Figure 7.6: The Utah teapot rendered using different values of the diffuse reflection coefficient
(ka = 0).

Example 21 A triangular polygon defined by the V matrix below where each column contains the co-
ordinates of the vertex is lit from a point light source located at p = (0, 4, 1) with a lighting intensity
Ip = 1

V =

−2 1 0
−1 1 3
4 5 4

 .

Given that the surface has a diffuse reflection coefficient of kd = 0.8, calculate the intensity of the diffuse
light reflected off the centre of the polygon.

Calculate the surface normal vector

n = ((1, 1, 5)− (−2,−1, 4))× ((0, 3, 4)− (1, 1, 5)) = (3, 2, 1)× (−1, 2,−1) = (−4, 2, 8)

‖n‖ =
√

(−4)2 + 22 + 82 = 9.1652

n̂ = 1
9.1652(−4, 2, 8) = (−0.4364, 0.2182, 0.8729).

Dr Jon Shiach 119 Maths of Graphics and Virtual Environments

Chapter 7. Lighting Back to Table of Contents

Calculate the light source vector

c = 1
3 ((−2,−1, 4) + (1, 1, 5) + (0, 3, 4)) = (−0.3333, 1, 4.3333)

L = p− c = (0, 4, 1)− (−0.3333, 1, 4.3333) = (−0.3333,−3, 3.3333)

‖L‖ =
√

(−0.33)2 + (−3)2 + (3.33)2 = 4.4969

L̂ = 1
4.4969(−0.3333,−3, 3.3333) = (−0.0741,−0.6671, 0.7412).

Calculate the diffuse intensity

D = Ipkd max(L̂ · n̂, 0)
= 1(0.8) max ((−0.0741,−0.6671, 0.7412) · (−0.4364, 0.2182, 0.8729), 0)
= 0.8 max(0.5338, 0)
= 0.4270.

7.1.3 Specular reflection

Specular reflection is the reflection of light off a smooth surface. Light rays falling on a smooth surface
will be reflected predominantly in one direction (figure 7.7). To the viewer, a smooth surface will appear
shiny when a light is shined on it e.g., a mirror.

incident rays reflected rays

Figure 7.7: Light rays falling on a smooth surface are scattered in one direction.

Consider figure 7.8 where R̂ is the reflection vector that represents the direction of a reflected ray of
light and V̂ is the viewing vector pointing to the viewer. The angle between the reflection vector and
the surface normal is the same as the angle between the light source vector and the surface normal. The
angle between the viewing vector and the reflecting vector is denoted by α. The amount of reflected light
that can be seen by the viewer depends upon the size of α. When α is close to zero, the viewing vector is
close to the reflection vectors and the viewer should be able to see a lot of the reflected light. When α is
larger, the viewing vector is further away from the reflection vector and the amount of reflected light that
the viewer can see decreases.

n̂

L̂ R̂

V̂
θ θ

α

Figure 7.8: Modelling specular reflection.

Dr Jon Shiach 120 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 7. Lighting

To model specular reflection, the Phong reflection model uses a cosine function raised to a power, i.e.,

S = Ipks cosn(α),

where Ip is the intensity of the point light source as used in the diffuse reflection model, ks is the specular
coefficient and n is the specular exponent. ks is in the range [0, 1] which controls the shininess of the
surface where a ks value close to zero means the surface is dull and when ks is close to 1 the surface
is shiny. The value of n is any positive real number and controls the spread of the specular reflection
(figure 7.9).

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

θ

co
sn

(θ
)

n = 1
n = 5
n = 50

Figure 7.9: Plots of cosn(α) for different values of the specular exponent n.

Similar to the diffuse reflection model, we can substitute a dot product in place of the cosine function to
improve computational efficiency. If R̂ and V̂ are unit vectors then specular reflection model is

S = Ipks(V̂ · R̂)n. (51)

The effect of altering the specular exponent can be seen in figure 7.10 where the Utah teapot has been
rendered using different values for n.

Dr Jon Shiach 121 Maths of Graphics and Virtual Environments

Chapter 7. Lighting Back to Table of Contents

(a) n = 20 (b) n = 10

(c) n = 5 (d) n = 1

Figure 7.10: The Utah teapot rendered using different values of the specular exponent (ka = 0,
kd = 0, ks = 1).

7.1.4 Calculating the reflection vector

To calculate the reflection vector R̂ we can use the projection of one vector onto another. Consider
figure 7.11 where the vector a is projected onto vector b resulting in vector c.

a

bc
θ

Figure 7.11: The vector a projected onto vector b results in vector c.

To determine c we use the definition of a dot product

a · b = ‖a‖‖b‖ cos(θ).

Dr Jon Shiach 122 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 7. Lighting

Since cos(θ) = ‖c‖
‖a‖ then

a · b = ‖a‖‖b‖‖c‖
‖a‖ = ‖b‖‖c‖,

∴ ‖c‖ = a · b
‖b‖

If b̂ is a unit vector then
‖c‖ = a · b̂

and

c = (a · b̂)b̂.

L̂

(L̂ · n̂)n̂

(L̂ · n̂)n̂
R̂

R̂

n̂

Figure 7.12: Calculating the reflection vector R̂.

Consider figure 7.12 where the relationship between the light source vector L̂, the reflection vector R̂ and
the surface unit normal vector n̂ is shown. The projection of L̂ onto n̂ is (L̂ · n̂)n̂ and the sum of L̂ and
R̂ is equal to two times (L̂ · n̂)n̂, i.e.,

L̂ + R̂ = 2(L̂ · n̂)n̂,

rearranging to make R̂ the subject gives

R̂ = 2(L̂ · n̂)n̂− L̂. (52)

Example 22 The triangular polygon from example 21 is viewed from the origin (0, 0, 0). Given that the
surface has a specular reflection coefficient of ks = 1 and a specular exponent of n = 5, calculate the
intensity of the specular light seen by the viewer.

We saw in example 21 that the surface normal vector and light source vector were

n̂ = (−0.4364, 0.2182, 0.8729),
L̂ = (−0.0741,−0.6671, 0.7412).

Calculating the reflection vector

R̂ = 2(L̂ · n̂)n̂− L̂
= 2 ((−0.0741,−0.6671, 0.7412) · (−0.4364, 0.2182, 0.8729)) (−0.4364, 0.2182, 0.8729)
− (−0.0741,−0.6671, 0.7412)

= (−0.3918, 0.9001, 0.1906).

Dr Jon Shiach 123 Maths of Graphics and Virtual Environments

Chapter 7. Lighting Back to Table of Contents

Calculate the viewing vector

V = c− (0, 0, 0) = (−0.3333, 1, 4.3333)

‖V‖ =
√

0.33332 + 12 + 4.33332 = 4.4597

V̂ = 1
4.4597(−0.3333, 1, 4.3333) = (−0.0747, 0.2242, 0.9717).

Calculating the specular light reflected to the viewer

S = Ipks(V̂ · R̂)n

= 1(1) ((−0.0747, 0.2242, 0.9717) · (−0.3918, 0.9001, 0.1906))5

= 0.41635 = 0.0625.

7.1.5 Attenuation

Attenuation is the loss of light energy through space. The Phong reflection model uses an approximation
of the attenuation that multiplies both the diffuse and specular terms. This approximation is

fatt = 1−
(
d

r

)2
, (53)

where r is the radius of the light source’s sphere of influence.

d

fatt

0 r0

1

Figure 7.13: The attenuation reduces the intensity of diffuse and specular reflection components
based on the distance d of the object from the light source.

7.1.6 Phong’s reflection model

Combining models of ambient reflection equation (48)), diffuse reflection equation (50)), specular reflection
equation (51)) and the attenuation factor gives Phong’s reflection model

I = Iaka︸︷︷︸
ambient

+ fattIpkd max(L̂ · n̂, 0)︸ ︷︷ ︸
diffuse

+ fattIpks(V̂ · R̂)n︸ ︷︷ ︸
specular

.

Factorising the diffuse and specular terms gives

I = Iaka + fattIp
(
kd max(L̂ · n̂, 0) + ks(V̂ · R̂)n

)
. (54)

figure 7.14 demonstrates how the separate components of the Phong reflection model combine to produce
a realistic rendering of the Utah teapot. Note that the colour of the specular reflections are not the same
colour as the object. The colour of specular reflections depends upon the colour of the point light source.

Dr Jon Shiach 124 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 7. Lighting

(a) ambient (ka = 0.5) (b) diffuse (kd = 0.5)

(c) specular (ks = 1, n = 5) (d) ambient + diffuse + specular

Figure 7.14: Components of the Phong reflection model applied to the Utah teapot.

7.1.7 Object and light source colour
The colour of objects and light sources is modelled using the RGB colour model where levels of Red, Green
and Blue are combined to produce colours in the visible spectrum. To account for the colour of objects and
light sources, the Phong reflection model is applied to each colour component in the RGB colour model.
Let OR, OG and OB be the red, green and blue colour components for the object, IaR, IaG and IaB be
the colour of the ambient light source and IpR, IpG and IpB be the colour of the point light source, then
the Phong reflection model taking into account object and light source colour is:

IR = IaRka + fattIpR
(
ORkd max(L̂ · n̂, 0) + ks(V̂ · R̂)n

)
,

IG = IaGka + fattIpG
(
OGkd max(L̂ · n̂, 0) + ks(V̂ · R̂)n

)
,

IB = IaBka + fattIpB
(
OBkd max(L̂ · n̂, 0) + ks(V̂ · R̂)n

)
.

For simplicity the colour components are combined so that λ = (Red,Green,Blue) giving

Iλ = Iaλka + fattIpλ
(
Oλkd max(L̂ · n̂, 0) + ks(V̂ · R̂)n

)
. (55)

7.1.8 Phong’s reflection model for multiple light sources
The attenuation factor, intensity of the point light source, the lighting vector and reflection vector all
depend on the light source and its position. If there are multiple light sources in a scene, the diffuse and

Dr Jon Shiach 125 Maths of Graphics and Virtual Environments

Chapter 7. Lighting Back to Table of Contents

specular reflection models need to be calculated for each light source. To extend Phong’s reflection model
to take into account multiple light sources we simply the sum the diffuse and specular terms for each light
source, i.e.,

Iλ = Iaλka +
m∑
i=1

fatt,iIpλ,i
(
Oλkd max(L̂i · n̂, 0) + ks(V̂ · R̂i)n

)
(56)

where m is the number of light sources.

The variables used in the Phong reflection model are summarised in table 7.1.

Table 7.1: Variables used in the Phong reflection model

Variable Description
Iaλ Ambient light intensity (λ = (Red,Green,Blue))
Ipλ Point light source intensity
Oλ Object colour
ka Ambient reflection coefficient
kd Diffuse reflection coefficient
ks Specular reflection coefficien
n Specular exponent
fatt Attenuation factor
n̂ Surface normal vector
L̂ Light source vector
R̂ Reflection vector
V̂ Viewing vector

Dr Jon Shiach 126 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 7. Lighting

7.2 Shading methods

The Phong reflection model presented in the previous section allows us to calculate the lighting for a single
pixel given the position of the point light source and the viewer. To apply the Phong reflection model to
a scene we need to consider how all pixels in a polygon are to be shaded. In this section we will look at
three shading methods: flat shading, Gouraud shading and Phong shading.

7.2.1 Flat shading

Flat shading (also known as Lambertian shading) assumes that all pixels in a polygon are illuminated
equally. The Phong reflection model is calculated using the normal vector for the polygon and all pixels
assume the same illumination intensity.

The MATLAB peaks function has been shaded using flat shading in figure 7.15.

Figure 7.15: MATLAB’s peaks function shaded using flat shading (25× 25 polygons).

7.2.2 Mach banding

The rendering of the peaks function in figure 7.15 demonstrates an effect called mach banding. It is easy
for us to be able to detect the edges of the polygons and the facets in the image. This is because the
human brain has evolved to be very good at detecting changes in colour (useful for hunting and avoiding
predators).

One method that we could use to avoid the mach banding effect is to increase the number of polygons
that are used to represent a surface. Figure 7.17 shows the peaks function with 400×400 polygons shaded
using flat shading. Increasing the number of polygons that represent a surface is obviously not a practical
option so we need better shading methods.

Dr Jon Shiach 127 Maths of Graphics and Virtual Environments

Chapter 7. Lighting Back to Table of Contents

brightness actual brightness

perceived brightness

dark

light

Figure 7.16: Mach banding means that changes in colour are exaggerated.

Figure 7.17: MATLAB’s peaks function shaded using flat shading (400× 400 polygons).

7.2.3 Gouraud shading

Gouraud shading was first developed by Henri Gouraud (1973) and it attempts to improve the appearance
of three-dimensional objects when lit using the Phong reflection model. We have seen that shading a
polygon using a constant colour results in a poor image, Gouraud shading linearly interpolates the intensity
of the shading of the pixels that make up the interior of the polygons.

Gouraud shading is applied by applying the Phong reflection model to calculate the intensity of the vertex
pixels. The normal vectors used in the Phong reflection model are calculated by averaging the the normal
vectors of the polygons that share that vertex. For all other pixels in a polygon, the illumination intensity
of the vertex pixels is interpolated across the polygon.

Dr Jon Shiach 128 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 7. Lighting

(x0, y0)

(x1, y1)

(x2, y2)

(xL, y) (xR, y)
(x, y)

Figure 7.18: The illumination intensities of the interior pixels (x, y) are calculated by interpolating
across the scanline between the scan extrema (xL, y) and (xR, y).

To calculate the illumination intensities of the pixels in a polygon Gouraud shading uses the scanline
algorithm (see section 2.4.3 in chapter 2). Consider figure 7.18 that shows a polygon with vertices (x0, y0),
(x1, y1) and (x2, y2). (xL, y) and (xR, y) are the left and right scan extrema respectively and (x, y) is pixel
along the scanline. Let I0 and I1 be the illumination intensities of the vertex pixels (x0, y0) and (x1, y1)
respectively (calculated using the Phong reflection model).

The scanline algorithm loops through each horizontal row of pixels starting at the pixel with the smallest
y co-ordinate (remember that the origin of a raster is in the top left-hand corner). The interpolating
equations for the intensities of the scan extrema pixels are

IL = I0 + ∆IL,
IR = I0 + ∆IR,

∆IL = Ip − Iq
yp − yq

,

∆IR = Ir − Is
yr − ys

,

where p, q and r, s are the indices of the upper and lower vertices for the left and right-hand polygon edges
respectively. Note that like with scanline filling, ∆IL and ∆IR is constant for all points along the current
edge so can be pre-calculated to save computational effort.

The interpolating equations for the intensity of the pixels on the scanline are

I = I + ∆I,

∆I = IR − IL
xR − xL

.

Dr Jon Shiach 129 Maths of Graphics and Virtual Environments

Chapter 7. Lighting Back to Table of Contents

Figure 7.19: MATLAB’s peaks function shaded using Gouraud shading (25× 25 polygons).

The peaks function has been shaded using Gouraud shading in figure 7.19. It is clearly noticeable that
Gouraud shading produces a significantly better image than when lit using flat shading. However because
the Phong lighting model is only applied at the vertices, the specular reflection components do not appear
to be as vivid as they should be. Also, it is possible to determine the edges of the polygons when the
specular reflections are predominant at the vertices. Gouraud shading does present an improvement over
the flat shading method but one major disadvantage is that when a light source is close to the centre of
a large polygon, the Phong lighting model applied at the vertices of the polygon will not be lit as brightly
has the source been close to the vertices. The interpolation across the interior of the polygon means that
although there is a light source close to the interior, the lighting of the polygon does not reflect this. It is
for this reason that when using Gouraud shading smaller polygons are preferable.

7.2.4 Phong shading
Phong shading (Phong 1975) (not to be confused with the Phong reflection model) is a shading method
that improves on Gouraud shading. Instead of interpolating the illumination intensities of the vertex pixels
across the polygon, Phong shading interpolates the normal vectors of the vertex pixels. Since every pixel
in a polygon has a normal vector, Phong’s reflection model can then be calculated for each pixel.

Consider figure 7.20 that shows the same three sided polygon used to describe Gouraud shading except the
normal vectors at each vertex are shown. n̂0, n̂1 and n̂2 are the normal vectors for the vertices (x0, y0),
(x1, y1) and (x2, y2) respectively, using a similar interpolation method shown in section 7.2.3 the normal
vectors at pixels (xL, y), (xR, y) and (x, y) are calculated using

nL = nL + ∆nL,
nR = nR + ∆nR,

n = n + ∆n,

∆nL = np − nq
yp − yq

,

∆nR = nr − ns
yr − ys

,

∆n = nR − nL
xR − xL

,

where p, q and r, s are the indices of the upper and lower vertices for the left and right-hand edges
respectively.

Dr Jon Shiach 130 Maths of Graphics and Virtual Environments

Back to Table of Contents Chapter 7. Lighting

(x0, y0)

(x1, y1)

(x2, y2)

(xL, y) (xR, y)
(x, y)

n0

n1

nL

n2

nR

n

Figure 7.20: Phong shading interpolates the normals vectors of the vertices across all pixels in
the polygon.

The peaks function has been shaded using Phong shading in figure 7.21. It is clear that Phong shading
produces a much improved image than flat or Gouraud shading. The specular reflections are more vivid
that in the Gouraud plot (figure 7.19) and the plot closely resembles that done using flat shading with
400× 400 polygons (figure 7.17).

Figure 7.21: MATLAB’s peaks function shaded using Phong shading (25× 25 polygons).

Dr Jon Shiach 131 Maths of Graphics and Virtual Environments

References

Abrash, M. (2001). Graphics Programming Black Book. url: http://www.jagregory.com/abrash-
black-book/.

Abrash, M. and Carmack, J. (1996). “Quake”. In: id software.

Bresenham, J.E. (1965). “Algorithm for computer control of a digital plotter”. In: IBM Systems Journal
4.1, pp. 25–30.

Carmack, J. and Romero, J. (1993). “Doom”. In: id software.

Cyrus, M. and Beck, J. (1978). “Generalized two- and three-dimensional clipping”. In: Computers &
Graphics, pp. 23–28.

Gouraud, H. (1973). “Continuous shading of curved surfaces”. In: IEEE Transactions on Computers
20.6, pp. 623–628.

Phong, B.T. (1975). “Illumination of Computer Generated Images”. In: Communications of ACM 18.6,
pp. 311–317.

Pitteway, M.L.V. (1967). “Algorithm for drawing ellipses of hyperbolae with a digital plotter”. In: Computer
Journal 10.3, pp. 282–289.

Schumaker, R., Brand, B., Gilliland, M., and Sharp, W. (1969). Study for applying computer generated
images to visual simulation. Tech. rep. General Electric Co.

Sutherland, I. and Hodgman, G.W. (1974). “Reentrant polygon clipping”. In: Communications of the
ACM 17, pp. 32–42.

Unity Technologies (2017). Unity - Manual: Normal map (Bump mapping). url: https://docs.
unity3d.com/Manual/StandardShaderMaterialParameterNormalMap.html (visited on 01/15/2018).

Zapyon (2011). Painter’s algorithm. url: https : / / en . wikipedia . org / wiki / Painter % 27s _
algorithm#/media/File:Painter%27s_algorithm.svg (visited on 05/2017).

133

http://www.jagregory.com/abrash-black-book/
http://www.jagregory.com/abrash-black-book/
https://docs.unity3d.com/Manual/StandardShaderMaterialParameterNormalMap.html
https://docs.unity3d.com/Manual/StandardShaderMaterialParameterNormalMap.html
https://en.wikipedia.org/wiki/Painter%27s_algorithm#/media/File:Painter%27s_algorithm.svg
https://en.wikipedia.org/wiki/Painter%27s_algorithm#/media/File:Painter%27s_algorithm.svg

Appendix A

Exercise solutions

A.1 Rasterisation

Solutions to the exercises on page 44.

1. (a)

x y

2 1
3 2
4 2
5 3
6 4
7 4
8 5

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

(b)

x y

3 0
4 1
4 2
5 3
6 4
6 5
7 6

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

(c)

135

Appendix A. Exercise solutions Back to Table of Contents

x y

10 4
9 4
8 5
7 5
6 6
5 6
4 7
3 7

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

(d)

x y

9 8
8 7
7 6
6 6
5 5
4 4

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

2. (a)

x y

7 0
7 1
7 2
6 3
6 4
5 5

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

(b) (9, 0), (9, 1), (9, 2), (8, 3), (8, 4), (7, 5), (6, 6)

x y

9 0
9 1
9 2
8 3
8 4
7 5
6 6

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

(c) (15, 0), (15, 1), (15, 2), (15, 3), (14, 4), (14, 5), (14, 6), (13, 7), (13, 8), (12, 9), (11, 10)

Dr Jon Shiach 136 Maths of Graphics and Virtual Environments

Back to Table of Contents Appendix A. Exercise solutions

x y

15 0
15 1
15 2
15 3
14 4
14 5
14 6
13 7
13 8
12 9
11 10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

3.

Order x y

1 4 4
2 4 5
3 4 6
4 4 7
5 5 7
6 5 6
7 5 5
8 5 4
9 6 5
10 6 6
11 7 6
12 7 5

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

4.

y xL xR

1 4 4
2 4 6
3 3 7
4 3 9
5 3 7
6 3 6
7 2 4
8 2 2

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

Dr Jon Shiach 137 Maths of Graphics and Virtual Environments

Appendix A. Exercise solutions Back to Table of Contents

A.2 Bézier curves
Solutions to the exercises on page 70.

1. (a) (2.92, 3.28)

(b) (4.68, 4.52)

(c) (6.28, 4.72)

(d) (7.72, 3.88)

x

y

00 1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

2. (a) c(t) = (1− t)3p0 + 3t(1− t)2p1 + 3t2(1− t)p2 + t3p3

(b) M =

−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0

3.

x

y

00 1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

Dr Jon Shiach 138 Maths of Graphics and Virtual Environments

Back to Table of Contents Appendix A. Exercise solutions

A.3 Hidden surface removal
Solutions to the exercises on page 89.

1. Faces 1 and 4 are front facing.

2. (a) A valid BSP tree is

H,P, T

E,Q

F,G C, S

A,B D,R

J,N

K,L,M I,O

(b) A valid BSP tree is

D,H,X

E,M,Q

N, V

W P, T

R, S O,U

G,K

I, J F, L

Z

C

Y A2, B

A1, AA

3. (a) p1: {K,L,M}, {J,N}, {I,O}, {H,P, T}, {F,G}, {E,Q}, {D,R}, {C, S}, {A,B};

p2: {A,B}, {C, S}, {D,R}, {E,Q}, {F,G}, {H,P, T}, {K,L,M}, {J,N}, {I,O};

p3: {A,B}, {C, S}, {D,R}, {E,Q}, {F,G}, {H,P, T}, {I,O}, {J,N}, {K,L,M}.

(b) p3: {R,S}, {P, T}, {O,U}, {N,V }, {W}, {E,M,Q}, {I, J}, {G,K}, {F,L}, {D,H,X},

{A1, AA}, {Z}, {Y }, {C}, {A2, B};

p2: {A1, AA}, {Z}, {A2, B}, {C}, {Y }, {D,H,X}, {I, J}, {G,K}, {F,L}, {E,M,Q},

{R,S}, {P, T}, {O,U}, {N,V }, {W};

p3: {A1, AA}, {Z}, {Y }, {C}, {A2, B}, {D,H,X}, {R,S}, {P, T}, {O,U}, {N,V }, {W},

{E,M,Q}, {F,L}, {G,K}, {I, J};

p4: {A1, AA}, {Z}, {A2, B}, {C}, {Y }, {D,H,X}, {I, J}, {G,K}, {F,L}, {E,M,Q}, {W},

{N,V }, {O,U}, {P, T}, {R,S}.

Dr Jon Shiach 139 Maths of Graphics and Virtual Environments

Appendix A. Exercise solutions Back to Table of Contents

A.4 Clipping
Solutions to the exercises on page 112.

1. (a) P =

1.0734 0 0 0

0 1.9083 0 0
0 0 1.5 −10
0 0 1 0

(b) Vscreen =

−0.3578 0.3220 0.1342
−0.9542 −0.1908 0.4771
−0.1667 0.5000 0.2500

1 1 1

2. (a) (2.9231, 1.6154)→ (5, 3);

(b) (1.5263, 4.1053)→ (6, 5);

(c) (4, 1.4)→ (4, 5.6).

x

y

(1, 2)

(6, 1)

(7, 5)

(2, 6)

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8

Figure A.1: Clip region

3. List = {i7, i8, i1, i2,v2, i3, i4, V4, i6}

v1

v2

v3

v4

v5

left edge

bottom edge

right edge

top edge

i1 i2

i3
i4

i5
i6

i7

i8

4. (a) (5, 8.2857)→ (8, 10);

(b) (20, 3.8947)→ (16.25, 3.5);

(c) (18, 5)→ (20, 7);

(d) reject line;

Dr Jon Shiach 140 Maths of Graphics and Virtual Environments

Index

Bézier curves
Bézier surface, 68
Bernstein polynomials, 59
general form, 59
MATLAB code, 64
matrix form, 62

antialiasing, 47

back-space culling, 75
algorithm, 76
normal vector calculation, 75

binary space partitioning, 81
atomic subspace, 81
balanced trees, 85
BSP tree generation, 83
BSP tree traversial, 86
BSP trees, 82
convex set, 81
hyperplane, 81
optimising BSP trees, 84
visibility ordering, 86

Binomial coefficient, 60
Bresenham’s algorithm, 11

algorithm, 15
derivation, 14
drawing lines in any direction, 17
MATLAB code, 15

Cartesian co-ordinate systems, 2
clipping, 91

aspect ratio, 94
bitcode, 108
calculating intersection point, 102
Cohen-Sutherland algorithm, 108, 109
Cyrus-Beck algorithm, 100, 102
field of view, 93
line clipping, 100
perspective projection, 92
point and plane distance, 100
polygon clipping, 104
projection matrix, 96
Sutherland-Hodgman algorithm, 104
viewing frustum, 91

convolution, 48
box blur, 50
Gaussian blur, 50

sharpening, 52
cross product, 4

dot product, 3

face array, 74
flood fill algorithm, 25

graphics pipeline, 5
object space, 5
screen space, 6
view space, 6
world space, 5

hidden surface removal
back-space culling, 75
binary space partitioning, 81
painter’s algorithm, 78

homogeneous co-ordinates, 2

image processing
antialiasing, 47
edge detection, 54
embossing, 53
kernel, 48
Sobel operator, 54
super sampling antialiasing, 47

kernel, 48

lighting
ambient reflection, 116
attenuation, 124
diffuse reflection, 117
direct illumination, 115
flat shading, 127
global illumination, 115
Gouraud shading, 128
Lambertian shading, 127
mach banding, 127
Phong reflection model, 116
Phong shading, 130
Phong’s reflection model for multiple light sources,

125
reflection vector, 122
specular reflection, 120

logical and, 108
logical or, 108

141

Index Back to Table of Contents

magnitude, 3
MATLAB

image, 11
imread, 10
whos, 10

midpoint algorithm, 20
circle symmetry, 20

normal vector, 74

painter’s algorithm, 78
parametric equation of a straight line, 57
parametric equations, 57
perspective projection, 92
perspective projection matrix, 96
point and plane distance, 100
polygon, 7

concave polygon, 8
convex polygon, 8
definition, 7
edges, 7
vertices, 7

polynomial, 57
polynomial degree, 57

rasterisation
Bresenham’s algorithm, 11
drawing circles, 20
drawing lines in any direction, 17
drawing polygons, 25
flood fill algorithm, 25
idealised image, 9
line drawing, 11
midpoint algorithm, 20
pixel, 9
pixel co-ordinates, 11
raster, 9
raster arrays, 10
RGB colour model, 9
scanline, 28
scanline filling algorithm, 28
texture mapping, 32

RGB colour model, 9

scan extrema, 28
scanline filling

algorithm, 29
scan extrema, 28
scanline, 28

super sampling antialising, 47

texture mapping, 32
algorithm, 34
bump mapping, 42
calculating scan extrema, 33

interpolating along scanline, 34
normal mapping, 42
perspective corrected algorithm, 40
perspective correction, 39
textel, 32
texture map, 32
texture space, 32

unit vector, 3
Utah teapot, 73

vector magnitude, 3
vectors, 2
vertex array, 74

Dr Jon Shiach 142 Maths of Graphics and Virtual Environments

	Preliminaries
	Introduction to the unit
	Review of linear algebra
	The graphics pipeline
	Polygons

	Rasterisation
	Rasters
	Bresenham's algorithm
	Drawing circles
	Drawing polygons
	Texture Mapping
	Perspective corrected texture mapping
	Normal mapping
	Exercises

	Image Processing
	Antialiasing
	Convolution

	Bézier Curves
	Bézier curves
	Bézier surfaces
	Exercises

	Hidden Surface Removal
	Defining objects
	Back-face culling
	Painter's algorithm
	Binary Space Partitioning
	Exercises

	Clipping
	The viewing frustum
	Line clipping
	The Cyrus-Beck algorithm
	The Sutherland-Hodgman algorithm
	The Cohen-Sutherland algorithm
	Exercises

	Lighting
	The Phong reflection model
	Shading methods

	Exercise solutions
	Rasterisation
	Bézier curves
	Hidden surface removal
	Clipping

