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Chapter 1

Deriving Runge-Kutta Methods

The Runge-Kutta methods are a class of numerical methods used for the calculation of solutions to Ordinary
Differential Equations (ODEs). Named after German mathematicians Carl Runge (1856 – 1927) and Martin
Kutta (1867 – 1944), Runge-Kutta methods are an example of single step methods because calculation
of the solution at the next step only requires values from the current step unlike the class of multistep
methods that require values from multiple previous steps. Since the advent of computer technology has
enabled computational methods to be applied to solve differential equations, the Runge-Kutta methods
have become popular with mathematicians, physicists and engineers due to their convenience and accuracy.

The derivation of explicit Runge-Kutta methods uses the Taylor series to determine the values of the
coefficients in the method. This is simple for low order methods but soon becomes unwieldy for higher
order methods (order 3 and above). New Zealand mathematician John Butcher (1987; 2009) developed a
method that uses rooted trees to generate the order conditions for Runge-Kutta methods that significantly
simplifies the derivation of higher order methods.

1.1 ODEs preliminaries

1.1.1 Ordinary Differential Equations (ODEs)

An ODE is an equation that is written in terms of a function of a single dependent variable and derivatives
of this function. Let x be the independent variable and y is a function of x then an ODE can be written
in the form

y(N)(x) = f(x, y, y′, y′′, . . . , y(N−1)), (1.1)

where y′, y′′ etc. denote derivatives of y with respect to x∗. The order of an ODE is the order of the
largest derivative in the ODE. The solution to an ODE is the function y over the interval x ∈ [a, b] where
x ∈ R.

1.1.2 Initial Value Problems (IVPs)

The solution of an ODE is an infinite number of functions that satisfy the ODE unless the solution y(x)
is known at a particular value of x. If it is known that the solution to an ODE when x = x0 is y(x0) = α
where α is some value then we write this as
∗In this chapter, x is used to represent the dependent variable instead of the more common t to avoid confusion when using

trees that are represented by t.
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y(N)(x) = f(x, y, y′, y′′, . . . , y(N−1)), x ∈ [xmin, xmax], y(xmin) = α. (1.2)

For most practical applications, the solution may be known at the start of some process, e.g., the concen-
tration of a substance is known before some chemical reaction. Problems of the form Eq. (1.2) are known
as an initial value problems.

1.1.3 Higher order ODEs

The numerical methods used to solve ODEs only apply to first-order ODEs. An N th order ODE can be
written as a system of N + 1 first-order ODEs by defining a number of functions that equal the derivatives
in the ODE. For example given the ODE in Eq. (1.1), let y1 = y, y2 = y′, y3 = y′′ etc. then

y′1 = y2,

y′2 = y3,

...
y′N = f(x, y1, y2, . . . , yN−1).

1.2 General form of a Runge-Kutta method

A Runge-Kutta method for solving an ODE of the form shown in Eq. (1.2) is

yn+1 = yn + h
s∑
i=1

biki, (1.3)

where

ki = f(xn + cih, yn + h
s∑
j=1

aijkj), (1.4)

and yn is a known solution for x = xn, yn+1 is the unknown solution for x = xn+1 that is being computed,
h is the step length which is defined as h = xn+1 − xn, ki where i = 1, . . . , s are the intermediate stage
values and aij , bi and ci where i, j = 1, . . . , s are coefficients that define the specific Runge-Kutta method.

It is common to express Runga-Kutta methods in the form of a Butcher tableau where the coefficients are
arranged such that

c A

b (1.5)

For example, an s-stage Runge-Kutta method the Butcher tableau would take the form
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c1 a11 a12 · · · a1s
c2 a21 a22 · · · a2s
...

...
... . . . ...

cs as1 as2 · · · ass
b1 b2 · · · bs

(1.6)

1.2.1 Explicit Runge-Kutta methods

Explicit Runge-Kutta (ERK) methods are methods where the ki stage values are expressed explicitly in
terms of known values, i.e., the calculation of each stage depends only on known values of the previous
stages. For example,

k1 = f(xn, yn),
k2 = f(xn + c2h, yn + ha21k1),
k3 = f(xn + c3h, yn + h(a31k1 + a32k2)),
...

ks = f(xn + csh, yn + h(as1k1 + as2k2 + . . .+ as,s−1ks−1)),

or alternatively as the Butcher tableau

0 0
c2 a21
c3 a31 a32
...

...
... . . .

cs as1 as2 · · · as,s−1
b1 b2 · · · bs−1 bs

(1.7)

The advantages of ERK methods is that they are straight forward to compute although a disadvantage are
that they can struggle to solve stiff systems (see Chapter 3).

1.3 Trees

A tree is a graph where any two vertices are connected by exactly one path. A graph G is a tree if the
following conditions are satisfied:

• G is connected (it is possible to define a path to join one vertex to any other vertex in G)

• G has no cycles (a path that starts and ends at the same vertex)

• A cycle is formed if any edge is add to G

• If any edge is removed from G then it is disconnected

• If G has n vertices then it has n− 1 edges

Dr Jon Shiach 3 Runge-Kutta Methods
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• A tree can be known as a rooted tree where a special node is singled out. Rooted trees are usually
represented with the root vertex drawn at the bottom of the tree

A tree can be known as a rooted tree where a special vertex is singled out to be the root vertex. Rooted
trees are usually represented with the root vertex drawn at the bottom of the tree. From herein in these
notes will refer to rooted trees by the term ‘trees’.

For convenience we define τ as the tree (a tree with just one vertex and no edges) and to write t =
[t1t2 · · · tν ] as the tree formed by adjoining the roots of the trees t1t2 . . . tν to the root of τ. If t1, t2, . . . , tm
are distinct and occur k1, k2, . . . , km times amongst t1, t2, . . . , tν then we write

t = [tk1
1 t

k2
2 . . . tkm

m ],

and
m∑
i=1

ki = ν (Butcher, 2009).

For example, consider the tree below

this can be represented using tree notation as

t = [t1t2t3] =
[ ]

= [ τ [τ2] [τ] ].

1.3.1 Properties of rooted trees

Let T denote the set of rooted trees t then the following properties apply (Lambert, 1991):

• The order, denoted by r(t), is the number of vertices in the tree t and can be calculated using the
following recursive relation

r(τ) = 1, (1.8a)

r([tk1
1 t

k2
2 . . . tkm

m ]) = 1 +
m∑
i=1

kir(ti). (1.8b)

• The symmetry, denoted by σ(t), is the order of the automorphism† group of t and can be calculated
using the following recursive relation

σ(τ) = 1, (1.9a)

σ([tk1
1 t

k2
2 . . . tkm

m ]) =
m∏
i=1

ki!σ(ti)ki . (1.9b)

†“An automorphism of a graph is a graph isomorphism with itself, i.e., a mapping from the vertices of the given graph G
back to vertices of G such that the resulting graph is isomorphic with G.” (Weisstein, 2016)
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• The density, denoted by γ(t), is defined by the following recursive relation

γ(τ) = 1, (1.10a)

γ([tk1
1 t

k2
2 . . . tkm

m ]) = r([tk1
1 t

k2
2 . . . tkm

m ])
m∏
i=1

γ(ti)ki . (1.10b)

An alternative, and somewhat easier, way of calculating γ(t) is to assign the leaf vertices a value of
1 and all other vertices the value of the sum of the values of their child vertices plus 1. γ(t) is then
the product of all of the values of the vertices.

• α(t) is the number of ways of labelling within an ordered set and is calculated using

α(t) = r(t)!
σ(t)γ(t) . (1.11)

• β(t) is the number of ways of labelling within an unordered set and is calculated using

β(t) = r(t)!
σ(t) . (1.12)

Example 1.3.1. Determine the (i) order; (ii) symmetry; (iii) density and (iv) number of labelling combi-
nations for the following tree

Using the notation defined here we have

t = [t1t2] =
[ ]

= [ [τ2] [τ] ].

(i) The order r(t) is calculated using Eqs. (1.8a) and (1.8b)

r(t) = 1 + r(t1) + r(t2)
= 1 + r([τ2]) + r([τ])
= 1 + (1 + 2r(τ)) + (1 + r(τ))
= 1 + (1 + 2(1)) + (1 + 1)
= 6.

Of course this could easily be determined by simply counting the vertices in t.
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(ii) The symmetry σ(t) is calculated using Eqs. (1.9a) and (1.9b)

σ(t) = k1!σ(t1)k1k2!σ(t2)k2

= 1!σ([τ2])11!σ([τ])1

= 2!σ(τ)21!σ(τ)1

= 2(1)2 × 1
= 2

(iii) The density γ(t) is calculated using Eqs. (1.10a) and (1.10b)

γ(t) = r(t)γ(t1)γ(t2)
= 6r([τ2])γ(τ)2r([τ])γ(τ)
= 6× 3(1)2 × 2(1)
= 36.

Using the alternative way of calculating γ(t) we can assign the following values to the vertices where
the values of a vertex is one more than the sum of the values of its children

6

2

1

3

11

and calculating the product of all of the vertex values we have

γ(t) = 6× 3× 2× 1× 1× 1 = 36.

(iv) The values of α(t) and β(t) are calculated using Eqs. (1.11) and (1.12)

α(t) = r(t)!
σ(t)γ(t) = 6!

2(36) = 10,

β(t) = r(t)!
σ(t) = 6!

2 = 360.

The values of r(t), σ(t), γ(t), α(t) and β(t) for all trees up to third-order are shown in Table 1.1.
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Table 1.1: Rooted trees up to third-order with their values of r(t), σ(t), γ(t), α(t) and β(t).

Tree

t τ [τ] [τ2] [[τ]]
r(t) 1 2 3 3
σ(t) 1 1 2 1
γ(t) 1 2 3 6
α(t) 1 1 1 1
β(t) 1 2 3 6

1.4 Deriving Explicit Runge-Kutta methods
The derivation of a Runge-Kutta method is achieved by comparing the Taylor series expansion of the
general first-order ODE

y′ = f(x, y),

to the equivalent Taylor series expansion of the general Runge-Kutta method from Eqs. (1.3) and (1.4).
This produces a series of conditions that the values of aij , bi and ci that need to satisfy in order to produce
a Runge-Kutta method.

1.4.1 Taylor expansion of the first-order ODE

Consider the well known Taylor series

y(x+ h) = y +
∞∑
p=1

hp

p! y
(p). (1.13)

To use this to solve the first-order autonomous ODE

y′ = f(y), (1.14)

we need to determine the second-order, third-order etc. derivatives. Using the chain and product rules we
have

y′′ = f ′(y)y′

= f ′(y)f(y),
y′′′ = f ′′(y)f(y)y′ + f ′(y)f ′(y)y′

= f ′′(y)f(y)f(y) + f ′(y)f ′(y)f(y),
...

To continue to evaluate higher order derivatives this approach is going to become increasingly compli-
cated, however, Butcher observed that there were similarities between these expressions and rooted trees.
Introducing a notation such that f = f(y), f ′ = f ′(y) , f ′′ = f ′′(y) etc. then

y′ = f , (1.15a)
y′′ = f ′f , (1.15b)
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y′′′ = f ′′(f , f) + f ′f ′f . (1.15c)

In the term f ′′(f , f), each of the two f vectors is one of the operands of the bi-linear operator f ′′ (Butcher,
2009). Consider Table 1.2 where the derivatives of the first-order autonomous ODE in Eq. (1.14) have
been tabulated next to their corresponding rooted trees.

Table 1.2: Elementary differentials and their equivalent rooted trees.

Elementary differential Rooted tree

f f

f ′f f ′
f

f ′′(f , f) f ′′
ff

f ′f ′f
f ′
f ′
f

Note that a leaf vertex denotes f and for all other vertices the order of the derivative is the number of
child vertices of a vertex. These trees can be linked to elementary differentials in Eqs. (1.15a) to (1.15c)
by the following

F (τ) = y′ = f , (1.16a)
F ([t1t2 . . . tν ]) = y(N) = f (N)(F (t1), F (t2), . . . , F (tν)). (1.16b)

The Taylor series expansion, Eq. (1.13), of the ODE in Eq. (1.14) for x0 + h can be written as

y(x0 + h) = y(x0) +
∑
t∈T

hr(t)

r(t)!F (t), (1.17)

where T is the set of all rooted trees and F (t) is an elementary differential of the tree t. Using the definition
of α(t) in Eq. (1.11), we can simplify Eq. (1.17) to

y(x0 + h) = y(x0) +
∑
t∈T

hr(t)

σ(t)γ(t)F (t). (1.18)

Equation (1.18) is the Taylor series expansion of the first-order ODE in Eq. (1.14) written in terms of the
trees t.

1.4.2 Taylor series expansion of a numerical approximation

To determine the the values of aij , bi and ci that define a Runge-Kutta method, we need to define
expressions that give the order conditions for the trees. For this we use elementary weights which is
a polynomial function Φ(t) for a the tree t. The elementary weights are applied to the derivatives in
Eq. (1.17) to give the Taylor series expansion of the computed solution at x0 + h

y(x0 + h) = y(x0) +
∑
t∈T

β(t)hr(t)

r(t)! Φ(t)F (t),

Dr Jon Shiach 8 Runge-Kutta Methods
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which can be simplified using the definition of β(t) in Eq. (1.12) to

y(x0 + h) = y(x0) +
∑
t∈T

hr(t)

σ(t) Φ(t)F (t). (1.19)

So now we have a Taylor series for the numerical approximation in Eq. (1.19) and a Taylor series for the
exact solution to the ODE in Eq. (1.18). We need these two to be equivalent up to a given order of
accuracy p so equating these results in the following condition on Φ(t)

Φ(t) = 1
γ(t) , (1.20)

for all trees such that r(t) ≤ p. Equation (1.20) are known as the order conditions for the Runge-Kutta
method.

1.4.3 Determining the elementary weights

Given the tree t, the elementary weights, Φ(t), are determined using the following procedure:

1. for each non-leaf vertex of a tree associate a label i, j, . . . where i is attached to the root vertex;

2. write down a sequence of factors for which the first is bi;

3. for each edge of the tree that does not terminate in a leaf vertex write down another factor, aij say,
where an edge joins vertex i to vertex j;

4. finally for each leaf vertex write down a factor cj say where j is the label attached to the parent
vertex;

5. sum the product of the factors for all possible choices of the labels.

Example 1.4.1. Find the elementary weight of the tree t = [ [τ2] [τ] ].

Sketching the tree t and labelling the non-leaf vertices gives

i

kj

therefore
Φ(t) =

∑
i,j,k

biaijaikcjcjck =
∑
i,j,k

biaijaikc
2
jck.

1.4.4 Deriving the order conditions of an ERK method

For a pth order method we need to satisfy Eq. (1.20) for all trees in T with r(t) ≤ p. This produces a
system of nonlinear equations in terms of aij , bi and ci . Since for ERK methods c1 = 0 and the matrix A
is lower triangular (Eq. (1.6)) then aij = 0 where i ≤ j.

Example 1.4.2. Use trees to derive a second-order Runge-Kutta method.

Dr Jon Shiach 9 Runge-Kutta Methods
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Since we are deriving a second-order ERK, T is the set of all rooted trees of order 2 or less

T =
{
,

}
= {τ, [τ]}.

A second-order ERK has s = 2 stages so the elementary weights of τ and [τ] are

Φ(τ) =
2∑
i=1

bi = b1 + b2,

Φ([τ]) =
2∑
i=1

bici = b1c1 + b2c2,

therefore to satisfy Eq. (1.20) we have

b1 + b2 = 1,

b1c1 + b2c2 = 1
2 .

Since c1 = 0 and including the row sum condition the order conditions for a second-order ERK method are

b1 + b2 = 1,

b2c2 = 1
2 ,

a21 = c2.

Choosing c2 = 1 gives b1 = b2 = 1/2 and a21 = 1 so

0
1 1

1/2 1/2

which is the classical second-order explicit Runge-Kutta method

k1 = f(xn, yn),
k2 = f(xn + h, yn + hk1),

yn+1 = yn + h

2 (k1 + k2).

Dr Jon Shiach 10 Runge-Kutta Methods
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1.5 Tutorial exercises
1. For the tree below, express it using tree notation and calculate r(t), σ(t) and γ(t).

2. Without sketching the tree, calculate r(t), σ(t) and γ(t) for the tree t = [ τ [τ]2 [[τ2]] ].

3. Sketch the following trees, determine r(t), Φ(t), γ(t) and write down the expression for the corre-
sponding differentials F (t).

(a) t = [ τ [ [τ2] τ ] ]

(b) t = [ [τ2] [ [τ3] ] [τ] ]

4. Write out the expansion of Eq. (1.17) to third-order and show that it is equivalent to the third-order
Taylor series expansion of y′ = f(y) given in Eq. (1.13) .

5. Use trees to derive the order conditions for a third-order explicit Runge-Kutta method. Hence derive
the third-order ERK method when c3 = 1

6. Determine γ(t) and Φ(t) for all fifth-order rooted trees.

The solutions to these exercises can be found on page 65
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Chapter 2

Adaptive Step Size Control

Runge-Kutta methods are commonly used to solve first-order Initial Value Problems (IVP) of the form

y′ = f(t, y), t ∈ [tstart, tend], y(tstart) = y0,

where y is a function of the dependent variable t∗ and y0 is the known initial value of the solution at
t = tstart.

The approach used by computational methods to solve IVPs begin with the known initial solution y0 and
then integrate the solution over some small step in t such that t1 = tstart + h to obtain an approximation
of the solution y1 at t = t1. This procedure is repeated for y2, y3 etc. until we have an approximation of
the solution at t = tend. Runge-Kutta methods are called single step methods since information at a single
step, yn, is required to advance the solution to the next step yn+1 whereas multistep methods require
information from multiple previous steps, yn−1, yn−2, . . ..

The accuracy of the approximation to the solution to the ODE is dependent upon three factors:

• the order of accuracy of the computational method;

• the size of the step length h used to advance the solution;

• the behaviour of the solution.

Improving the order of accuracy of the method is often not straightforward and can place restrictions on the
applicability of the method. Reducing the step length used will improve the accuracy of the approximation
but since more steps are required to advance through the domain, this will increase the computational
cost. The behaviour of the solution will have an affect on the accuracy of the approximation because
computational methods are more accurate where the solution is slowly varying and less accurate where
there are rapid variations in the solution.

A simple implementation of a Runge-Kutta method may use constant step length for all calculations. The
advantage of this is that the step length can be selected to produce an approximation to a desired accuracy
and to ensure stability requirements. However, using a fixed step length does not allow the method to
take advantage of increasing h where the behaviour of the solution allows. Adaptive step size control is a
method that attempts to control the value of h based on accuracy requirements.

∗From this chapter onward, the independent variable will be represented by t as is commonly used in the literature as
opposed to x used in the previous chapter.
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2.1 Accuracy of Runge-Kutta methods

Before we discuss step size control an analysis of the accuracy of Runge-Kutta methods is required. Consider
the classical fourth-order Runge-Kutta method (RK4) which can be written as

k1 = f(tn, yn),

k2 = f

(
tn + h

2 , yn + h

2k1

)
,

k3 = f

(
tn + h

2 , yn + h

2k2

)
,

k4 = f(tn + h, yn + hk3),

yn+1 = yn + h

6 (k1 + 2k2 + 2k3 + k4), (2.1)

where yn is the approximated solution of y(tn) and h is the step length. We will investigate the derivation
of the RK4 method using Simpson’s rule.

2.1.1 Derivation of the RK4 method using Simpson’s rule

Consider the curve of y over a single step from tn to tn+1. The value yn+1 can be determined by integrating
f(y), e.g.,

yn+1 − yn =
∫ tn+1

tn
f(y) dt. (2.2)

Recall Simpson’s rule for estimating a direct integral

∫ b

a
f(x)dx ≈ h

6

(
f(a) + 4f

(
a+ b

2

)
+ f(b)

)
, (2.3)

then applied to compute an approximation of the integral in Eq. (2.2) we have

∫ tn+1

tn
f(y)dt ≈ h

6 (f(yn) + 4f(yn+ 1
2
) + f(yn+1)),

therefore

yn+1 = yn + h

6 (f(yn) + 4f(yn+ 1
2
) + f(yn+1)). (2.4)

Let k1 = f(yn), k4 = f(yn+1) and k2 and k3 be defined by

f(yn+ 1
2
) = k1 + k2

2 ,

then Eq. (2.4) can be written as

yn+1 = yn + h

6

(
k1 + 4

(
k2 + k3

2

)
+ k4

)
= yn + h

6 (k1 + 2k2 + 2k3 + k4),

which is the RK4 method given in Eq. (2.1).
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2.1.2 Error estimates

In most practical cases an exact solution to a problem is unknown so it is not possible to calculate the
error between the exact solution and a numerical approximation. We can however compare the accuracy of
different methods by examining how quickly the error will tend towards zero as the step length is reduced.
This uses what is known as ‘big-oh’ notation.

Definition 2.1.1. Let f(h) be a function of h and define f(h) = O(hn) such that the following is satisfied

lim
h→0

f(h)
hn

= C,

where C > 0.

When h is sufficiently small

O(hn) ≈ Chn, (2.5)

then as h→ 0, O(hn)→ 0 at a rate faster than hn → 0.

To examine the error in the RK4 method, we calculate an estimate of the local truncation error, est, using
the error for Simpson’s rule which is

est = (b− a)5

2880 f (4)(x), x ∈ (a, b). (2.6)

Applied to the RK4 method with step length h we have

est = h5

2880y
(4)(t).

The global truncation error E(y, h) after n steps of the RK4 method with step length h is the summation
of the local truncation errors for each step, i.e.,

E(y, h) =
n∑
n=1

h5

2880y
(4)(t) ≈ (b− a)h4

2880 y(4)(t) = O(h4).

Using Eq. (2.5) we have

E(y, h) = Ch4,

thus halving the step length gives

E

(
y,
h

2

)
= C

(
h

2

)4
= Ch4

16 ≈
1
16E(y, h),

so reducing the step length by a factor of 2 reduces the global truncation error by a factor of 1/16 = 2−4.
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2.1.3 Improving the accuracy of the numerical solution

We have seen that one way to improve the accuracy of a solution is to simply halve the step length.
However this requires many more function evaluations and is computationally inefficient. Another way to
improve accuracy is to use a higher order Runge-Kutta method. The problem with this is that the number
of stages required does not increase in a linear fashion. For example, for s ≥ 5 where s is the number of
stages, there are no explicit Runge-Kutta methods of order p where s = p. To obtain a fifth-order method
requires s = 6 stages and a s = 7 stage method still only results in a fifth-order method.

2.2 Step doubling

The simplest attempt at controlling the step size is by the use of the step doubling method. For each step
in the method, two solutions are computed using an order p method: yn+1,h is calculated using a single
step of length h and yn+1,h/2 is calculated using two steps of length h/2. These solutions are compared
and used to calculate an estimation of the difference between yn+1,h/2 and that of an order p+ 1 method.
If the difference is less than a desired accuracy, the solution yn+1,h/2 is considered accurate enough and is
used for yn+1. Furthermore if the error is a lot less than the desired accuracy, the step length h is doubled
for the next step thus resulting in fewer steps needed to compute the solution. However, if the error is
greater than a desired accuracy, the current step is considered to have failed, the step length is halved and
the current step is repeated.

Of course in computing every step at least twice we are increasing the number of calculations required.
Consider the RK4 method Eq. (2.1) with step doubling applied. To compute a single step of length h,
yn+1,h, we require 4 function evaluations for the stage values ki (Fig. 2.1). For two steps of length h/2
we require 8 function evaluations, however, the value of k1 is the same for both the one step solution
and the first step of the two step solution so in total we have 11 function evaluations. Therefore, by
checking whether we can double the step length we have increased the computational cost by a factor of
just 11/8 = 1.375 (Press et al., 1993).

t
yn yn+1,h

k1 k2

k3
k4

(a) Single step of length h

t
yn yn+1/2,h/2

k1 k2

k3
k4

yn+1,h/2

k1
k2

k3
k4

(b) Two steps of length h/2

Figure 2.1: Function evaluations for a single step of step doubling when applied to RK4.

2.2.1 Estimating the error

To determine whether we are able to double the step size whilst maintaining a desired accuracy we need to
estimate the error between the order p two-step solution and that of an order p+ 1 method. If ỹ denotes
the exact solution over a single time step and y1 and y2 denote computed solutions using one and two
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steps of an order p method, then the exact solutions and computed solutions are related by the following

ỹ = y1 + Chp+1 +O(hp+2), (2.7a)

ỹ = y2 + 2C
(
h

2

)p+1
+O(hp+2). (2.7b)

Taking the difference between the two computed solutions and solving for C gives

|y1 − y2| = Chp+1
(

1− 1
2p
)

∴ C = |y1 − y2|
(1− 2−p)hp+1 . (2.8)

Substituting C into Eq. (2.7b) results in

ỹ = y2 + |y1 − y2|
2p − 1 +O(hp+2), (2.9)

So what we have achieved in Eq. (2.9) is increase the order of the accuracy of an order p method to order
p+ 1. For example using RK4, p = 4 and

ỹ = y2 + |y1 − y2|
15 +O(h6).

Let est be the difference between an order p approximation yn+1,h/2 and the truncation error for an order
p+ 1 method, then

est = |y1 − y2|
2p − 1 . (2.10)

When applied to solve a system of ODEs, Eq. (2.10) is calculated for each equation in the system and the
largest value used to determine whether we need to decrease h.

2.2.2 The step doubling algorithm

The step doubling algorithm is outlined in Algorithm 1.
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Algorithm 1 Step doubling method for solving an IVP
Require: A first-order IVP of the form Y ′ = f(t, Y ), t ∈ [tstart, tend], y(tstart), an initial step length h
and desired accuracy tol.
t0 ← tstart
y0 ← y(tstart)
n← 0
Define Runge-Kutta parameters A, b and c
while tn < tend do

h← min(h, tend − tn) . Ensure the h does not overshoot tend
Apply RK method to calculate yn+1,h/2 . two steps of h/2
Apply RK method to calculate yn+1,h . one step of h

est←
|yn+1,h − yn+1,h/2|

2p − 1
if est > tol then . Solution does not satisfy accuracy requirements

h← h/2
else . Solution satisfies accuracy requirements

tn+1 ← tn + h
yn+1 ← yn+1,h/2
n← n+ 1
if est� tol then . Solution well within accuracy tolerance

h← 2h
end if

end if
end while
return (t0, t1, . . . , tn) and (y0, y1, . . . , yn)

2.3 Adaptive step size control
The disadvantages of using the step doubling method is that we have to compute three solutions of the
Runge-Kutta method and that we can only double the step length if the solution allows, i.e., it is a double
or nothing method. The adaptive step size control method attempts to find the largest possible step length
that still maintains a desired accuracy.

The solution procedure is as follows: the solution over one step of length h is calculated using a method of
order p and p+ 1. The two solutions are then used to calculate an estimate of the error err; if err < tol
then the step has succeeded, the solution is updated using the (p+ 1)th-order solution, the step length h
is increased and the solver advances to the next step; else if err > tol then the step has failed, the step
length h is decreased and the current step is repeated.

Using Eq. (2.5) the estimated error using a step length of h is

est = Chp+1.

We need to ensure that for a new step length hnew we have

tol = Chp+1
new.

Defining a ratio between the new step length and the current step length r = hnew/h, then

Chp+1
new

Chp+1 = tol

est
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rp+1 = tol

est

r =
(
tol

est

)1/(p+1)
.

For robustness, a step-size controller has to respond as smoothly as possible with to abrupt changes in the
behaviour of the solution. This means that the step size should not decrease or increase from one step to
the next by an excessive ratio. Also, if the user specified tolerance, given as a bound on the norm of the
local truncation error estimate, is ever exceeded re-computation and loss of performance will result. Hence,
to guard against this as much as possible a ‘safety factor’ is usually introduced into the computation.
If hnew is the estimated step size to give a predicted truncation error equal to the tolerance then some
smaller value, such as 0.9hnew is typically used instead. Combining all these ideas we can give a formula
for arriving at a factor r, to give a new step size hnew = rh following a step for which the error estimate
is est. The ratio r is given by

r = max
(

0.5,min
(

2.0, 0.9
(
tol

est

)1/(p+1)))
. (2.11)

The three constants, 0.5, 2.0 and 0.9, are all arbitrary and can be regarded as design parameters.

2.3.1 Embedded Runge-Kutta methods

The adaptive step size control method discussed in the previous section requires two solutions or orders
p and p + 1 to compute the error estimate err. We saw in Section 2.2 that this can be achieved by
invoking an order p method using step lengths h and h/2, however this means calculating three steps of a
method and is computationally inefficient. Fehlberg (1969) derived a Runge-Kutta method where different
weightings applied to the stage values can result in a method of order 4 or 5, so a single application of
the method can be used to calculate est. Since Fehlberg’s original method, several other Runge-Kutta
methods that use the same stage values for producing solutions of different orders have been suggested
and these methods are known as embedded Runge-Kutta methods.

The general form of an fifth-order Runge-Kutta formula is

k1 = f(tn, yn),
k2 = f(tn + c2h, yn + ha21k1),
...

k6 = hf(tn + c6h, yn + h(a61k1 + a62k2 + a63k3 + a64k4 + a65k5)),
yn+1 = yn + h(b1k1 + b2k2 + b3k3 + b4k4 + b5k5 + b6k6) +O(h6).

and the embedded fourth-order formula is

y∗n+1 = yn + h(b∗1k1 + b∗2k2 + b∗3k3 + b∗4k4 + b∗5k5 + b∗6k6) +O(h5).

To calculate the estimate of the error we simply subtract the order 4 solution from the order 5 solution

est = yn+1 − y∗n+1 = h
6∑
i=1

(bi − b∗i )ki.

Note that we do not need to compute y∗n+1 to calculate est, we just need the stage values ki which have
already been computed for the fifth-order solution yn+1. The Butcher tableau for an embedded Runge-
Kutta method is the same as that for a standard Runge-Kutta method with the addition of the weight for
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the fourth-order method, b∗, listed underneath those for the fifth-order method, b, i.e.,
c A

b
b∗

The Butcher tableau for three common embedded Runge-Kutta methods are given below

• Runge-Kutta-Fehlberg 4(5) method (RKF45) (Fehlberg, 1969)

0

1
4

1
4

3
8

3
32

9
32

12
13

1932
2197 −7200

2197
7296
2197

1 439
216 −8 3680

513 − 845
4104

1
2 − 8

27 2 −3544
2565

1859
4104 −11

40

16
135 0 6656

12825
28561
56430 − 9

50
2
55

25
216 0 1408

2565
2197
4104 −1

5 0

(2.12)

• Dormand-Prince method (RKDP) (Dormand and Prince, 1980)

0

1
5

1
5

3
10

3
40

9
40

4
5

44
45 −56

15
32
9

8
9

19372
6561 −25360

2187
64448
6561 −212

729

1 9017
3168 −355

33
46732
5247

49
176 − 5103

18656

1 35
384 0 500

1113
125
192 −2187

6784
11
84

35
384 0 500

1113
125
192 −2187

6784
11
84 0

5179
57600 0 7571

16695
393
640 − 92097

339200
187
2100

1
40

(2.13)
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• Cash-Karp method (RFCK) (Cash and Karp, 1990)

0

1
5

1
5

3
10

3
40

9
40

3
5

3
10 − 9

10
6
5

1 −11
54

5
2 −70

27
35
27

7
8

1631
55296

175
512

575
13828

44275
110592

253
4096

37
378 0 250

621
125
594 0 512

1771

2825
27648 0 18575

48384
13525
55296

277
14336

1
4

(2.14)

2.4 Solving systems of equations using explicit Runge-Kutta methods
Most practical problems require the solution of a system of ODEs rather than one single ODE. We can
easily adapt the Runge-Kutta methods to cope with systems of multiple ODEs by using matrices.

Consider a system of N first-order ODEs

y′1 = f1(t, y1, y2, . . . , yN ),
y′2 = f2(t, y1, y2, . . . , yN ),
...

y′N = fN (t, y1, y2, . . . , yN ),

we can write this using vector notation as

y′ = f(t,y),

where

y =


y1
y2
...
yN

 , f(t,y) =


f1(t,y)
f2(t,y)

...
fN (t,y)

 .

The general form of a Runge-Kutta method shown in Eqs. (1.3) and (1.4) then becomes

yn+1 = yn + h
s∑
i=1

kibi, (2.15a)
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ki = f

tn + cih,yn + h
s∑
j=1

kjaij

 , (2.15b)

where yn is a vector containing the current known solutions, yn+1 is a vector of the solutions advanced
by one step of length h and ki is a vector of the intermediate stage values (all of these vectors are column
vectors).

Defining K as an s×N matrix containing the vectors ki, i.e.,

K =


kT1
kT2
...

kTs

 .

then Eq. (2.15b) can be calculated using

ki = f(tn + cih,yn + h(ai1k1 + ai2k2 + . . .+ aisks))

= f

tn + cih,yn + h
(
ai1 ai2 · · · ais

)


kT1
kT2
...

kTs




= f(tn + cih,yn + h[A]i,∗K),

where [A]i,∗ denotes the ith row of A. Once the stage values have been calculated we can also use matrix
multiplication to update the solution with Eq. (2.15a)

yn+1 = yn + h(b1k1 + b2k2 + . . .+ bsks)
= yn + hbTK.
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2.4.1 Adaptive step size control algorithm

The algorithm for solving a system of ODEs using an ERK method with adaptive step size control is
outlined in Algorithm 2.

Algorithm 2 Solving a system of ODEs using an ERK with adaptive step size control.
Require: A first-order IVP of the form y′(t) = f(t,y), t ∈ [a, b], y(a), initial step length h and the

accuracy tolerance tol
t0 ← a
y0 ← y(a)
n← 0
Define embedded ERK parameters A, b, b∗ and c
while tn < b do

K ← 0 . K is an N × s matrix
for i = 1, . . . , s do

[K]i,∗ ← f(tn + cih, yn + h[A]i,∗K) . [K]i,∗ denotes the ith row of K
end for
est← hmax

∣∣∣KT (b− b∗)
∣∣∣

if est < tol then
yn+1 ← yn + hbTK
tn+1 ← tn + h
n← n+ 1

end if
r ← max

(
0.5,min

(
2.0, 0.9

(
tol

est

)1/(p+1)))
h← rh

end while
return t = (t0, t1, . . . , tn) and y = (y0, y1, . . . , yn)
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2.5 Tutorial exercises
1. An IVP is given by

y′ = −21y + e−t, t ∈ [0, 1], y0 = 0.

(a) Write a MATLAB program to compute one step of Fehlberg’s method for this IVP using a step
length of h = 0.05.

(b) Use Eq. (2.11) to calculate the size of the new step length using tol = 10−4. What does the
value of est tell you about the step you have just calculated?

(c) Modify your program so that computes the solution over the whole domain. How many suc-
cessful steps, failed steps and function evaluations were used in total? Produce a plot of your
solution.

2. The Lotka - Volterra equations describe the dynamics of the interaction between two species, one is
a predator and the other is the prey

ẋ = αx− βxy,
ẏ = σxy − γy,

where x and y are the populations of the prey and predator species respectively and α, β, σ, γ > 0
are parameters that describe the interaction between the two species.

(a) Use the RK4 method to compute the solution to the Lotka-Volterra equations over the domain
t ∈ [0, 20] with initial populations x = y = 1 and parameters α = 2/3, β = 4/3, σ = γ = 1
using a step length of h = 0.1. Produce a plot of the values of x and y against t on the same
set of axes.

(b) Repeat the calculations from question 1 using the RK4 method with step doubling with an error
tolerance of tol = 10−6. You may use the MATLAB function RKSD.m on the Moodle area for
this unit to help you.

(c) Repeat the calculations from question 2 using MATLAB’s ode45 solver.

(d) Produce a table that displays the CPU time, the number of function evaluations, number of
failed steps and number of successful steps for each method used to solve this problem.

(e) Access the code for the MATLAB function ode45 using the command ‘edit ode45’ in the MAT-
LAB command window and identify the embedded Runge-Kutta method used.

The solutions to these exercises are given on page 67.
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Chapter 3

Implicit Runge-Kutta Methods

We have already seen that Explicit Runge-Kutta (ERK) methods are very useful when solving ODEs.
However, for certain types of problems ERK methods will struggle due to stability constraints which require
the step lengths to be very small. Implicit Runge-Kutta (IRK) methods have much less restrictive stability
constraints allowing us to solve these problems.

3.1 General form of an implicit Runge-Kutta method
The general form of an Implicit Runge-Kutta (IRK) method can be expressed as the following Butcher
tableau.

c1 a11 a12 · · · a1s
c2 a21 a22 · · · a2s
...

...
... . . . ...

cs as1 as2 · · · ass
b1 b2 · · · bs

which leads to the following expressions for the stage values ki

k1 = f(tn + c1h, yn + h
s∑
j=1

a1jkj),

k2 = f(tn + c2h, yn + h
s∑
j=1

a2jkj),

...

ks = f(tn + csh, yn + h
s∑
j=1

a2jkj).

The solution is updated using a weighted sum of the stage values

yn+1 = yn + h
s∑
i=1

biki. (3.1)

25



Chapter 3. Implicit Runge-Kutta Methods Back to Table of Contents

For an explicit method the calculation of the stage values is straight forward, we calculate k1 which is then
used in the calculation of k2 and so on until ks. With an implicit method things are more complicated
since the expressions for the stage values are implicit relationships. For example, consider the expression
for k1 with the summation term expanded out

k1 = f(tn + c1h, yn + h(a11k1 + a12k2 + . . . a1sks)).

Here k1 also appears on the right-hand side of the expression so how do we calculate it? One way could
be to write the expressions for the stage values as a system of equations, let Yi = yn + h

∑s
j=1 aijkj then

ki = f(tn + cih, Yi),

so

Yi = yn + h
s∑
j=1

aijf(tn + cjh, Yj), (3.2)

and Eq. (3.1) becomes

yn+1 = yn + h
s∑
i=1

bif(tn + cih, Yi). (3.3)

To compute a step of an IRK method we solve Eq. (3.2) for Yi which are then used to update the solution
using Eq. (3.3).

Example 3.1.1. Compute one step of the third-order RadauIA method using h = 0.1 for the following IVP

y′ = t− y, t0 = 0, y(0) = 1.

The Butcher tableau for the RadauIA method is

0 1/4 −1/4
2/3 1/4 5/12

1/4 3/4

Using Eq. (3.2) we have

Y1 = yn + h(a11f(tn + c1h, Y1) + a12f(tn + c2h, Y2)),
Y2 = yn + h(a21f(tn + c1h, Y1) + a22f(tn + c2h, Y2)).

In this case f(t, y) = t− y and substituting the RadauIA method parameters

Y1 = yn + h

(1
4(tn + 0h− Y1)− 1

4

(
tn + 2

3h− Y2

))
,
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Y2 = yn + h

(1
4(tn + 0h− Y1) + 5

12

(
tn + 2

3h− Y2

))
.

Rearranging so that Y1 and Y2 are on the left-hand side

(
1 + h

4

)
Y1 −

h

4Y2 = yn −
1
6h

2,

h

4Y1 +
(

1 + 5
12h

)
Y2 = yn + 2

3 tn + 5
18h

2

which can be written as the matrix equation

(
1 + h/4 −h/4
h/4 1 + 5h/12

)(
Y1
Y2

)
=
(

yn − 1
6h

2

yn + 2
3 tn + 5

18h
2

)
.

For the first step t0 = 0, y0 = 1, h = 0.1 which leads to the linear system

(
1.0250 −0.0250
0.0250 1.0417

)(
Y1
Y2

)
=
(

0.9833
1.0694

)
.

which is solved to give Y1 = 0.9984, Y2 = 1.0027. We now use Eq. (3.3) to update the solution

y1 = y0 + h(b1f(t0 + c1h, Y1) + b2f(t0 + c2h, Y2))

= 1 + 0.1
(1

4(0− 0.9984) + 3
4

(
0 + 2

3(0.1)− 1.0027
))

= 0.9048.

Example 3.1.1 was fairly trivial, the IVP being solved involved a single linear ODE. This meant that it
was a simple to solve for Yi since we had a linear system and can use one of many methods (e.g., LU
factorisation). Also, this IVP was described by a single equation where in practice we will have systems of
equations to solve.

3.2 Newton’s method

Newton’s method (often called the Newton-Raphson method) is a numerical method for finding the roots
of a differentiable function. Consider Fig. 3.1 that shows the function g(x). Given an estimate of the root
x(k), the tangent line at the point g(x(k)) is determined and where this tangent line intersects the x-axis
becomes the new estimate x(k+1). The next estimate of the root is determined where the tangent line
drawn at g(x(k+1)) crosses the x-axis and so on. The process continues until two successive guess values
converge to a given tolerance (some small value that determines the level of accuracy required).
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y

x

g(x)

x(k)

g(x(k))

x(k+1)

g(x(k+1))

x(k+2)

Figure 3.1: Newton’s method for calculating the root of the function g(x).

The tangent of the line to g(x) at x = xk is

y = g(x(k)) + g′(x(k))(x− x(k)).

This tangent line crosses the horizontal axis at (x(k+1), 0) so

0 = g(x(k)) + g′(x(k))(x(k+1) − x(k)), (3.4)

which can be rearranged to make x(k+1) the subject

x(k+1) = x(k) − g(x(k))
g′(x(k))

. (3.5)

Equation (3.5) is Newton’s method for finding the root of a single variable function.

3.2.1 Newton’s method for a system of equations

We can extend Newton’s method for the one variable case as seen above to solve a system of N homoge-
neous equations in N unknowns, i.e.,

g1(x1, x2, . . . , xN ) = 0,
g2(x1, x2, . . . , xN ) = 0,

...
gN (x1, x2, . . . , xN ) = 0.

Introducing vector notation such that x = (x1, x2, . . . , xN )T and g(x) = (g1, g2, . . . , gN )T then we can
write the above system as the vector equation

g(x) = 0.
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For the one variable case the linear approximation of the function g(x) using the known value x(k) was
shown in Eq. (3.4). The vector form of this equation is

0 = g(x(k)) + J(x(k))(x(k+1) − x(k)) (3.6)

where J(x(k)) is the n× n Jacobian matrix

J(x(k)) =


∂g1
∂x1

· · · ∂g1
∂xN... . . . ...

∂gN
∂x1

· · · ∂gN
∂xN

 . (3.7)

Rearranging Eq. (3.6) gives

x(k+1) = x(k) − J−1(x(k))g(x(k)). (3.8)

This is the vector equivalent of the single variable equation Eq. (3.5). Unfortunately the calculation of
the inverse matrix J−1(x(k)) is too computationally expensive to be of practical use. Instead we use a
two-stage process, let ∆x = x(k+1) − x(k) then Eq. (3.8) can be written as

J(x(k))∆x = −g(x(k)). (3.9)

We know the values of J(x(k)) and −g(x(k)) so this is a linear system that can be solved to give ∆x.
Once we have a solution for ∆x we can calculate the improved estimate x(k+1) using

x(k+1) = x(k) + ∆x. (3.10)

3.3 Solving systems of equations using IRK methods
Solving systems of ODEs using an IRK method presents the added complication that the calculation of the
stage values has to be done for each equation in the system. This means that for a system of N ODEs,
each stage value Yi will be an N element vector. To simplify the notation we can make use of tensor
products.

Definition 3.3.1. Tensor product

The tensor product (also known as the Kronecker tensor product) of two matrices A and B is denoted by
A⊗B and is defined by the following

(
a11 a12
a21 a22

)
⊗
(
b11 b12
b21 b22

)
=


a11

(
b11 b12
b21 b22

)
a12

(
b11 b12
b21 b22

)

a21

(
b11 b12
b21 b22

)
a22

(
b11 b12
b21 b22

)

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=


a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a21b11 a21b12 a22b11 a22b12
a21b22 a21b22 a22b21 a22b22

 .

Consider the solution of a system of N first-order ODEs

y′(t) = f(t,y),

where

y =


y1
y2
...
yN

 , f(t,y) =


f1(t,y)
f2(t,y)

...
fN (t,y)

 .

Applying an IRK method to solve this system gives

ki = f(tn + cih,yn + h
s∑
j=1

aijkj),

yn+1 = yn + h
s∑
i=1

biki.

Let Yi = yn + h
∑s
j=1 aijkj then

Yi = yn + h
s∑
j=1

aijf(tn + cjh, Yj) (3.11)

yn+1 = yn + h
s∑
i=1

bif(tn + cih, Yi) (3.12)

Writing Eq. (3.11) for i = 1 . . . s


Y1
Y2
...
Ys

 =


yn
yn
...

yn

+ h


∑s
j=1 a1jf(tn + cjh, Yj)∑s
j=1 a2jf(tn + cjh, Yj)

...∑s
j=1 asjf(tn + cjh, Yj)


Each summation in the vector on the right-hand side is applied to all equations in the system, for example
the first summation results in the vector

s∑
j=1

a1jf(tn + cjh, Yj) =


∑s
j=1 a1jf1(tn + cjh, Yj)∑s
j=1 a1jf2(tn + cjh, Yj)

...∑s
j=1 a1jfN (tn + cjh, Yj)

 ,
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and similar for all other elements. The terms within the summations on the right-hand side can be written
using the N ×N identity matrix IN


a1jf1(tn + cjh, Yj)
a1jf2(tn + cjh, Yj)

...
a1jfN (tn + cjh, Yj)

 = a1j


1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 1



f1(tn + cjh, Yj)
f2(tn + cjh, Yj)

...
fN (tn + cjh, Yj)

 = a1jIN f(tn + cjh, Yj).

So for all s stages of the IRK method we can write


Y1
Y2
...
Ys

 =


yn
yn
...

yn

+ h


a11IN a12IN · · · a1sIN
a21IN a22IN · · · a2sIN

...
... . . . ...

as1IN as2IN · · · assIN




f(tn + c1h, Y1)
f(tn + c2h, Y2)

...
f(tn + csh, Ys)



=


yn
yn
...

yn

+ h(A⊗ IN )


f(tn + c1h, Y1)
f(tn + c2h, Y2)

...
f(tn + csh, Ys)


We can now write the original IRK method for a system of ODEs by defining the following vectors

Y =


Y1
Y2
...
Ys

 , F (tne + hc, Y ) =


f(tn + c1h, Y1)
f(tn + c2h, Y2)

...
f(tn + csh, Ys)

 , e =


1
1
...
1

 ,

where Y 4and F (tne + hc, Y ) are Ns× 1 element vectors then we can write Eq. (3.2) as

Y = e⊗ yn + h(A⊗ IN )F (tne + hc, Y ), (3.13)

and Eq. (3.1) becomes

yn+1 = yn + h(bT ⊗ IN )F (tne + hc, Y ). (3.14)

We solve Eq. (3.13) using Newton’s method and then update the solution using Eq. (3.14).

3.3.1 Calculating the stage values

To solve the matrix equation Eq. (3.13) for Y we need to apply Newton’s method. Writing it in the form
G(Y ) = 0 we have
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G(Y ) = Y − e⊗ yn − h(A⊗ IN )F (tne + hc, Y ), (3.15)

and the Jacobian matrix is

J(Y ) = INs − h(A⊗ IN )FY (tne + hc, Y ), (3.16)

where FY ∈ RNs×Ns. This is equivalent to

J(Y ) =


IN − ha11fY (tn + c1h, Y1) −ha12fY (tn + c2h, Y2) · · · −ha2sfY (tn + csh, Ys)

−ha21fY (tn + c1h, Y1) IN − ha22fY (tn + c2h, Y2) · · · −ha2sfY (tn + csh, Ys)
...

... . . . ...
−has1fY (tn + c1h, Y1) −has2fY (tn + c2h, Y2) · · · IN − hassfY (tn + csh, Ys)

 .

The terms fY (tn+cih, Yi) ∈ RN×N are Jacobian matrices for the system of ODEs being solved. These will
change as we iterate Newton’s method and the values of F (tn, Yi) change. Calculating the Jacobian matrix
at every iteration can be very expensive to compute for large systems so instead use an approximation of
FY

FY (t, Y ) ≈ Is ⊗ fy(tn,yn),

so Eq. (3.16) is simplified to

J(Y ) ≈ INs − h(A⊗ IN )(Is ⊗ fy(tn,yn)). (3.17)

Note that fy(tn,yn) is constant for the current step and only changes when tn and yn are updated so
it can be pre-calculated prior to performing the Newton iterations. In cases where it is not possible to
evaluate the derivatives so we can use finite-difference approximations of the individual derivatives, i.e.,

fy(tn,yn) ≈ f(tn,yn + δy)− f(tn,yn)
δy

,

for each element in fy(tn, yn) where δy is some small value. Modern sophisticated solvers offer a choice of
whether to calculate the Jacobian matrix at each step or even monitor the convergence rate of Newton’s
method to determine whether the Jacobian matrix requires calculating to reduce the computation time
required.

Once the Jacobian matrix is calculated the Newton iterations proceed by solving the linear system

J(Y )∆Y = −G(Y (k)), (3.18)
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for ∆Y and then updating Y (k) using

Y (k+1) = Y (k) + ∆Y, (3.19)

where Y (0) = e⊗yn. Iterations continue until ‖∆Y ‖ < tol. The steps used to solve an IVP using an IRK
method are given in Algorithm 3.

Algorithm 3 Solving an IVP using an IRK method.
Require: An IVP defined using a system of N first-order ODEs of the form y′(t) = f(t,y), t ∈ [tmin, tmax],

y(a), initial step length h and an accuracy tolerance tol
y0 ← y(a)
t0 ← tmin
n← 0
Define IRK parameters A, b, c and s
while tn < tmax do

Y ← e⊗ yn
J(Y )← INs − h(A⊗ IN )(Is ⊗ fy(tn,yn))
err ← 1
while err > tol do

G(Y )← Y − e⊗ yn − h(A⊗ IN )F (tne + hc, Y )
Solve J(Y )∆Y = −G(Y ) for ∆Y
Y ← Y + ∆Y
err ← ‖∆Y ‖

end while
yn+1 ← y + h(bT ⊗ IN )F (tne + hc, Y )
tn+1 ← tn + h
n← n+ 1

end while
return t = (t0, t1, . . . , tn) and y = (y0,y1, . . . yn)

Example 3.3.1. Calculate a single step of the third-order Radau IA method using h = 0.1 for the following
IVP

y′1 = 2y1 + y2, y1(0) = 1,
y′2 = y1y2, y2(0) = 0.

Recall that the Radau IA method parameters are

A =
(

1/4 −1/4
1/4 5/12

)
, b =

(
1/4
3/4

)
, c =

(
0

2/3

)
.

In this case it is possible to differentiate f(tn, yn) so
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fy(t,y) =


∂f1
∂y1

∂f1
∂y2

∂f2
∂y1

∂f2
∂y2

 =
(

2 1
y2 y1

)
,

therefore we can calculate the Jacobian matrix using Eq. (3.17)

J(Y ) = I4 − h(A⊗ I2)(I2 ⊗ fy(t,y))

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

− h


1/4 0 −1/4 0
0 1/4 0 −1/4

1/4 0 5/12 0
0 1/4 0 5/12




2 1 0 0
y2 y1 0 0
0 0 2 1
0 0 y2 y1



=


1− h/2 −h/4 h/4 h/4
−hy2/4 1− hy1/4 hy2/4 hy1/4
−h/4 −h/4 1− 5h/12 −5h/12
−hy2/4 −hy1/4 −5hy2/12 1− 5hy1/12

 ,

so for the first step of the IRK method, y1 = 1, y2 = 0 and h = 0.1, and the Jacobian matrix is

J(Y ) =


0.9500 −0.0250 0.0500 0.0250

0 0.9750 0 0.0250
−0.0500 −0.0250 0.9167 −0.0417

0 −0.0250 0 0.9583



Now we need to perform the Newton iterations. Initialising Y (0) and F (t0e + hc, Y (0))

Y (0) = e⊗ y0 =
(

1
1

)
⊗
(

1
0

)
=


1
0
1
0

 =⇒ F (t0e + hc, Y (0)) =


2
0
2
0

 ,

so

G(Y (0)) = Y (0) − e⊗ y0 − h(A⊗ I2)F (t0e + hc, Y (0))

=


1
0
1
0

−


1
0
1
0

− 0.1


1/4 0 −1/4 0
0 1/4 0 −1/4

1/4 0 5/12 0
0 1/4 0 5/12




2
0
2
0

 =


0
0

1.3333
0

 .

Solving J(Y )∆Y = −G(Y (0)) gives ∆Y = (−0.0076, 0, 0.1450, 0)T therefore
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Y 1 = Y (0) + ∆Y =


1
0
1
0

+


−0.0076

0
0.1450

0

 =


0.9924

0
1.1450

0

 ,

and ‖∆Y ‖ = 0.1452. Doing the same calculations using Y (1) results in very small values for ∆Y (less
than 10−13) and Newton’s method is considered to have converged after just 2 iterations to the solution
Y = Y (1).

Finally we just need to update the solution using Eq. (3.14)

y1 = y0 + h(bT ⊗ I2)F (t0e + hc, Y )

=
(

1
0

)
+ 0.1

(
1/4 0 3/4 0
0 1/4 0 3/4

)
1.9847

0
2.2901

0


=
(

1.2214
0

)
.

The MATLAB code used to compute the solution to Example 3.3.1 is shown in listing 3.1. Note that the
kron command computes the tensor product and inline functions are used to define the system of ODEs,
the vector F (te + hc, Y ) and the Jacobian matrix.
% Clear workspaces
clear
clc

% Define ODE functions and Jacobian
f = @(t, y) [ 2 * y(1) + y(2) ; y(1) * y(2) ];
F = @(t, Y) [ f(t(1) , Y(1:2)) ; f(t(1) , Y(3:4)) ];
Jac = @(t, y) [ 2, 1 ; y(2) , y(1) ];

% Define IVP parameters
y0 = [1 ; 0]; % initial values of y
t0 = 0; % initial value of t
N = 2; % no. equations in the system
h = 0.1; % step length
tol = 1d -6; % accuracy tolerance

% Define Radau method parameters
A = [ 1/4, -1/4 ; 1/4, 5/12 ];
b = [ 1/4 ; 3/4 ];
c = [ 0 ; 2/3 ];
s = 2;

% Initialise solution arrays
y = [y0 ’];
t = [t0];
n = 1;

% Use Newton ’s method to solve for the stage values Y
e = ones(s, 1);
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Y = kron(e, y(n, :) ’);
J = eye(N * s) - h * kron(A, eye(N)) * kron(eye(s), Jac(t(n), y(n, :)));
err = 1;

while err > tol
G = Y - kron(e, y(n, :) ’) - h * kron(A, eye(N)) * F(t(n) * e + h * c, Y);
DY = J \ -G;
Y = Y + DY;
err = norm(DY);

end

% Update solution
y(n+1, :) = ( y(n, :)’ + h * kron(b’, eye(N)) * F(t(n) * e + h * c, Y) ) ’;
t(n+1) = t(n) + h;

Listing 3.1: MATLAB code used to compute a single step of the Radau IA method in Example 3.3.1
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3.4 Tutorial exercises
1. An IVP is described by the following

y′ = 4ty, t ∈ [0, 1], y(0) = 1.

(a) Compute a single step of the third-order Radau IA method for this problem using a step length
h = 0.1.

0 1/4 −1/4
2/3 1/4 5/12

1/4 3/4

(b) Write a MATLAB program to compute the solutions over the domain t ∈ [0, 1].

2. The motion of a simple pendulum is described by the following ODE

θ̈ = −g
`

sin(θ),

where θ is the angle between the chord and the vertical, g = 9.81ms−2 is the acceleration due to
gravity and ` is the length of the chord.

A pendulum of length ` = 1m is pulled so that θ = 1 and then released.

(a) Write this ODE as a system of 2 first-order ODEs

(b) Compute a single step of the fourth-order Gauss-Legendre method given by the Butcher tableau
below using a step length h = 0.1 and a convergence tolerance of tol = 10−4.

1
2 −
√

3
6

1
4

1
4 −
√

3
6

1
2 +
√

3
6

1
4 +
√

3
6

1
4

1
2

1
2

(c) Calculate the solution over t ∈ [0, 10].

3. Solve the problem from question 2 using the ode23s solver and compare the solution with the one you
obtained in question 2. How many function evaluations and solutions of linear systems were required
for the ode23s solver?

The solutions to these exercises are given in Appendix A.4 on page 71.
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Chapter 4

Stability & Order Stars

4.1 Absolute stability

The stability of ODE solver methods can be examined using the linear test equation

y′ = λy (4.1)

where λ ∈ C. A single step of an ODE solver advances the solution by adding the step length h to the
current value dependent variable tn and approximates yn+1 using the current value of the solution yn. We
can write an ODE solver using

yn+1 = R(z)yn,

where z = hλ and R(z) is known as the stability function for the method under consideration. For single
step methods, the stability function can be represented by

R(z) = P (z)
Q(z) , (4.2)

where P and Q are polynomial functions. For example, consider the Euler method applied to solve Eq. (4.1)

yn+1 = yn + hf(tn, yn) = yn + hλyn = (1 + z)yn,

therefore the stability function for the Euler method is

R(z) = 1 + z, (4.3)

so P (z) = 1 + z and Q(z) = 1. Doing similar for the implicit Euler method results in

R(z) = 1
1− z , (4.4)

so P (z) = 1 and Q(z) = 1− z.
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4.1.1 The region of absolute stability

Since we do not want the error to accumulate as we step through the solution we require |R(z)| ≤ 1 for
our methods to remain stable. The values of z = hλ for which this condition is met is known as the region
of absolute stability and is formally defined by

S = {z ∈ C : |R(z)| ≤ 1}. (4.5)

Of course h ∈ R but λ ∈ C so the values of h where a method will remain stable can be achieved by
plotting R(z) for z ∈ C. The region where R(z) ≤ 1 gives the values of h for which the method is stable
can be determined by computing |R(z)| and plotting the contour where |R(z)| = 1 which represents the
boundary of S. For example, the stability regions for the Euler and implicit Euler methods defined using
Eqs. (4.3) and (4.4) are plotted in Fig. 4.1. The shaded regions denote z ∈ S so we can see that the Euler
method is stable for h ∈ [−2, 0] and for the implicit Euler method is stable for h ∈ R\[0, 2].

(a) Euler method (b) Implicit Euler method

Figure 4.1: Plots of the region of absolute stability S = {z ∈ C : |R(z)| ≤ 1} for the Euler and implicit
Euler methods (shaded region denotes z ∈ S).

4.2 Stability of systems of ODEs

4.2.1 Linear systems of ODEs

Consider a system of N linear ODEs

y′ = Ay, (4.6)

where A is an diagonalisable constant N ×N matrix with eigenvectors ri such that Ari = λiri and λi is
the eigenvalue of ri. If R = (r1, r2, · · · , rm) and D is a diagonal matrix of eigenvalues (Leveque, 2007),
i.e.,

D =


λ1

λ2
. . .

λm

 (4.7)

then

A = RDR−1 =⇒ D = R−1AR.
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Introducing the transformation u = R−1y

y′ = Ay
R−1y′ = R−1Ay
R−1y′ = R−1ARR−1y

u′ = Du.

So we now have a diagonal system of equations where the ith equation is

u′i = λiui.

Applying the Euler method to solve Eq. (4.6) results in

yn+1 = yn + hAy,

which can be transformed using un = R−1y into

un+1 = un + hDu,

so we now have N independent applications of the Euler method to solve N linear ODEs, e.g.,

ui,n+1 = ui,n + hλiui,n = (1 + hλi)ui,n.

The solution for yi,n can be obtained by reversing the transformation, i.e., yi,n = Rui,n. The stability of
a method used to solve the system of ODEs can be examined by considering the stability of each of the
individual equation in the transformed system. The equation with the most stringent stability criteria is
used to determine the step length for the solution method.

Example 4.2.1. Consider the equation for the motion of a pendulum

θ̈ + aθ + bθ̇ = 0

where a is related to the length of the pendulum and b is a dampening factor. Let θ1 = θ and θ2 = θ̇ then

θ̇1 = θ2,

θ̇2 = −aθ1 − bθ2

which can be written as θ̇ = Aθ where θ = (θ1, θ2)T and

A =
(

0 1
−a −b

)

The eigenvalues of A are λ = 1
2(−b±

√
b2 − 4a). The choice of the ODE solver and step length will depend

on values of a (which relate to the length of the pendulum) and b (the damping factor). For example, if
b > 0 then Re(λ) < 0 and the Euler method may be unstable of certain values of h whereas the implicit
Euler method would be fine.
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4.2.2 Non-linear systems of ODEs

For non-linear systems the linear stability analysis shown in Section 4.2.1 cannot be applied since the
eigenvalues of A are not constant. Instead we seek to approximate the non-linear system using a linear
system by assuming a slowly varying solution near the equilibrium points and a small step in the dependent
variable.

Consider the following non-linear system of ODEs with two equations

y′ = f(y),

where y = (y1, y2)T , f(y) = (f1(y), f2(y)) and an equilibrium point ȳ = (ȳ1, ȳ2)T . Using the first-order
multivariate Taylor series expansion we have

f1(y) = f1(ȳ) + ∂f1(ȳ)
∂y1

(y1 − ȳ1) + ∂f1(ȳ)
∂y2

(y2 − ȳ2),

f2(y) = f2(ȳ) + ∂f2(ȳ)
∂y1

(y1 − ȳ1) + ∂f2(ȳ)
∂y2

(y2 − ȳ2).

Since ȳ is an equilibrium point f1(ȳ) = f2(ȳ) = 0 and define u = (u1, u2)T where u1 = y1 − ȳ1 and
u2 = y2 − ȳ2 then

u′1 = ∂f1(ȳ)
∂y1

u1 + ∂f1(ȳ)
∂y2

u2,

u′2 = ∂f2(ȳ)
∂y1

u1 + ∂f2(ȳ)
∂y2

u2.

This is a linear system of the form u′ = Ju where the coefficient matrix is

J =


∂f1(ȳ)
∂y1

∂f1(ȳ)
∂y2

∂f2(ȳ)
∂y1

∂f2(ȳ)
∂y2

 ,
which is known as the Jacobian matrix. The stability analysis for a non-linear system is based upon the
linearised system u′ = Ju which consists of individual ODEs of the form u′i = λiui assuming that the
numerical method behaves in a similar way for the non-linear case.

Definition 4.2.1 (Equilibrium points). The equilibrium points for the non-linear system of differential
equations y′ = f(t,y) are the values of y where y′ = 0 for all t.

Example 4.2.2. Determine the equilibrium points for the system

y′1 = −4y2 + 2y1y2 − 8,
y′2 = 4y2

2 − y2
1.

The equilibrium points are found by finding the values of y1 and y2 that satisfy

0 = −4y2 + 2y1y2 − 8,
0 = 4y2

2 − y2
1.

The first equation can be rearranged to y1 = 2y2 and substituting into the first equation gives

0 = −4y2 + 4y2
2 − 8

∴ 0 = (y2 − 2)(y2 + 1),

So the solution is y2 = 2,−1 and y1 = 4,−2 so this system has two equilibrium points at (−2,−1) and
(4, 2).
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4.3 Relative stability
We have seen that we use the test equation y′ = λy to determine the region of absolute stability where the
errors of a numerical method will not increase over the solution. However, if we consider that the solution
of the test equation is y(t) = eλt then if the solution decreases exponentially then we should also expect
the errors to decrease exponentially. On the other hand if the solution increases exponentially then the
errors can also increase exponentially just so long as they do not exceed the growth of the solution.

This concept is the rationale behind the relative stability where the stability function is compared to ez
such that |R(z)| ≤ |ez| and the region of relative stability is defined as the set of all values of z = hλ that
satisfy this condition, e.g.,

A = {z ∈ C : |R(z)| ≤ |ez|} =
{
z ∈ C :

∣∣∣∣R(z)
ez

∣∣∣∣ ≤ 1
}
. (4.8)

4.3.1 Order stars

Consider the stability functions of the second and fourth-order explicit Runge-Kutta methods (second and
fourth-order series expansions of ez)

R(z) = 1 + z + z2

2 (RK2), (4.9)

R(z) = 1 + z + z2

2 + z3

6 + z4

24 (RK4), (4.10)

The relative stability regions defined by Eq. (4.8) have been plotted in Fig. 4.2. This is done by defining
a surface in the complex plane R(z) using the real and imaginary parts of z and plotting the contour
line where |R(z)/ez| = 1. These plots were given the name order stars by Wanner, Hairer, and Nørsett
(1978) in their seminal paper in which they showed that these regions are useful in determining the stability
properties and order of methods.

(a) RK2 (b) RK4

Figure 4.2: Relative stability plots or ‘order stars’ for the RK2 and RK4 methods.

The main noticeable feature of order stars is they consist of the following three regions

A− = {z ∈ C : |R(z)| < |ez|},
A0 = {z ∈ C : |R(z)| = |ez|},
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A+ = {z ∈ C : |R(z)| > |ez|}.

The shaded regions in Fig. 4.2 represent A+ whereas the white regions represent A− and the boundary
between the two represented by the black line is A0.

The shaded and white regions converge at the origin and the behaviour near the origin is linked to the
order of the method. If R(z) = ez + Czp+1 +O(hp+2) then since ez ≈ 1 near to the origin

e−zR(z) ≈ 1 + Czp+1.

Tracing out a circle around the origin with a very small radius δ so that z = δe2πiθ then zp+1 =
δp+1e2(p+1)πiθ goes around a smaller circle centred at the origin p + 1 times (Leveque, 2007). It fol-
lows that the order star of a pth order method has p+ 1 shaded regions and p+ 1 white regions converging
at the origin and hence the order star can be used to determine the order of the method (this is seen in
Fig. 4.2).

4.3.2 A stability

A desirable property of numerical ODE solvers and one that is particularly useful for the solution of stiff
systems is for a method to be A-stable. The region of absolute stability for A-stable methods covers the
whole of the left-hand side of the complex plane C−. Due to this property, there no limit to the size of
h for which the method remains stable. However, this does not mean that any value of h should be used
since too large a value may impact on accuracy requirements.

Recall that the stability function can be expressed as the rational polynomial

R(z) = P (z)
Q(z) .

A method is considered to be A-stable if the following criteria are met:

Criterion A. All poles are in C+ (the right-hand of the complex plane).

Criterion B. E(y) = Q(iy)Q(−iy)− P (iy)P (−iy) ≥ 0 for all y ∈ R.

It is quite easy to determine whether a method satisfies criterion A since we just need to determine the
value of z for which Q(z) = 0. This also shows that no explicit method can be A-stable since for an
explicit method Q(z) = 1. Using order stars means that the poles for the shaded region A+ should be in
the right-hand side of the complex plane C+.

Criterion B on the other hand can result in some complicated algebra where the imaginary terms do not
cancel out. (Wanner, Hairer, and Nørsett, 1978) showed that criterion B can expressed as follows:

Criterion B′. A+ ∩ iR = ∅

i.e., the shaded regions of the order star of an A-stable method do not cross the imaginary axis.

4.4 Padé approximants
We have seen that criterion A means that explicit Runge-Kutta methods cannot be A-stable so we can only
consider implicit Runge-Kutta methods. The stability functions of implicit Runge-Kutta methods below to
the family of Padé approximants of the exponential function (Hairer and Wanner, 1999).

A Padé approximant of order L/A of the function f(x) is denoted by

RL/M (x) = PL(x)
QM (x) =

∑L
i=0 aix

i∑M
i=0 bix

i
, (4.11)
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where PL(x) and QM (x) are polynomial functions of order L and M respectively and QM (0) = 1. We
require the Padé coefficients ai and bi to satisfy

f(x) = PL(x)
QM (x) . (4.12)

up to order L+M , therefore

f(0) = R(0),
f ′(0) = R′(0),
f ′′(0) = R′′(0),

...
f (L+M)(0) = R(L+M)(0),

so we can write

f(x)−RL/M (x) = O(xL+M+1). (4.13)

In other words the Padé approximant of order L/M is equivalent to f(x) up to order L + M . The Padé
coefficients ai and bi are found by equating the series expansion of f(x) =

∑L+M
i=0 cix

i with Eq. (4.11),
i.e.,

c0 + c1x+ c2x
2 + · · ·+ cL+Mx

L+M = a0 + a1x+ a2x
2 + · · ·+ aLx

L

1 + b1x+ b2x2 + · · ·+ bMxM
+O(xL+M+1).

Multiplying by the denominator and equating the coefficients for orders 0, 1, 2 etc. results in the following
set of equations

a0 = c0,

a1 = c1 + c0b1,

a2 = c2 + c1b1 + c0b2,

a3 = c3 + c2b1 + c1b2 + c0b3,

...

Since the values ci are known we have a system of L+M+1 equations and the same number of unknowns,
ai and bi. The solution of this system gives the coefficients for the L/M Padé approximant of f(x).

Example 4.4.1. Determine the Padé approximant exp1/2(x).

Since L = 1 and M = 2 we compare the series expansion of exp(x) up to order L+M = 3.

1 + x+ x2

2 + x3

6 = a0 + a1x

1 + b1x+ b2x2 ,

therefore

a0 = 1,
a1 = 1 + b1,

0 = 1
2 + b1 + b2,

0 = 1
6 + 1

2b1 + b2.
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The solution to this system is

a0 = 1, a1 = 1
3 , b1 = −2

3 , b2 = 1
6 .

and the Padé approximant is

exp1/2(x) =
1 + 1

3x

1− 2
3x+ 1

6x
2 .

4.4.1 Padé table for exp(z)

The Padé approximants up to order 2/2 are given in Table 4.1. These Padé approximants are the stability
functions of single step (i.e., Runge-Kutta) methods. For example, the approximants in the first row are
the stability functions for the explicit Runge-Kutta methods as shown in Eqs. (4.9) and (4.10). Birkhoff
and Varga (1965) showed that the entries on the main diagonal (L = M) are stability functions of A-stable
methods. Ehle (1969) extended this work and showed that the two sub-diagonals also represent A-stable
methods which was verified later by (Wanner, Hairer, and Nørsett, 1978).

Table 4.1: Padé approximants of exp(z) up to order 2/2.

M\L 0 1 2

0 1 1 + z 1 + z + 1
2z

2

1 1
1− z

1 + 1
2z

1− 1
2z

1 + 2
3z + 1

6z
2

1− 1
3z

2 1
1− z + 1

2z
2

1 + 1
3z

1− 2
3z + 1

6z
2

1 + 1
2z + 1

12z
2

1− 1
2z + 1

12z
2

To summarise, a L/M Padé approximant of exp(z) represents the stability function of an A-stable method
if

0 ≤M − L ≤ 2. (4.14)

The order stars for R(z) from the L = 2 column of the Padé table have been plotted in Fig. 4.3. Here
it can be clearly seen that exp2/2(z) and exp2/3(z) represent A-stable methods whereas exp2/1(z) and
exp2/5(z) do not thus verifying Eq. (4.14).
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(a) L = 2,M = 1 (b) L = 2,M = 2

(c) L = 2,M = 3 (d) L = 2,M = 5

Figure 4.3: The order stars for the Padé approximants show that Runge-Kutta methods are only A-stable
for M − L ∈ [0, 2].

4.5 Stiffness
An important consideration in choosing an ODE solver is the issue of stiffness. The precise definition is
not fully defined but (Lambert, 1991) provides a good verbal definition

If a numerical method is forced to use, in a certain interval of integration, a step length which
is excessively small in relation to the smoothness of the exact solution in that interval, then
the problem is said to be stiff in that interval.

In other words a stiff system is where the choice of step length is made to satisfy the stability constraints
as opposed to accuracy constraints.

For example consider the following linear equation

y′′ + 1001y′ + 1000y = 0

Rewriting this second-order ODE as a system of two first-order ODEs gives

y′1 = y2, (4.15a)
y′2 = −1001y2 − 1000y1, (4.15b)

which is in the form y′ = Ay where

A =
(

0 1
−1000 −1001

)
.

Dr Jon Shiach 47 Runge-Kutta Methods



Chapter 4. Stability & Order Stars Back to Table of Contents

The eigenvalues of A can be used to diagonalise the system Eqs. (4.15a) and (4.15b) so we have equations
of the form u′i = λui which are used to determine the range of values for which the step length will remain
stable for a particular method. Consider the region of absolute stability for the Euler method

|1 + hλ| ≤ 1,

taking the real part of λ gives

−1 ≤ 1 + hλ ≤ 1
−2 ≤ hλ ≤ 0

∴ h ≤ − 2
λ

The eigenvalues of A in this case are λ1 = −1 and λ2 = −1000 so we have h ≤ 2 for λ1 and h ≤ 0.002
for λ2.

This variability in the values of the eigenvalues (and therefore the step lengths) gives rise to the idea of
stiffness ratio which is defined as

R = maxi |Re(λi)|
mini |Re(λi)|

, (4.16)

such that when R is large the system is considered stiff.

Example 4.5.1. The well known van der Pol oscillator is described by the following second-order ODE

y′′ − µ(1− y2)y′ + y = 0.

Writing this as a system of two first-order ODEs gives

y′1 = y2, (4.17a)
y′2 = µ(1− y2

1)y2 − y1. (4.17b)

The stability of a non-linear system can be determined by approximating the system using a linear system
close to an equilibrium point. Equations (4.17a) and (4.17b) have an equilibrium point at (0,0) and the
Jacobian matrix is

J =
(

0 1
−2µy1y2 − 1 µ(1− y2

1)

)
,

so

J(0,0) =
(

0 1
−1 µ

)
,

which has eigenvalues λ = (µ±
√
µ2 − 4)/2. The value of µ will determine the values of the eigenvalues

and therefore the stiffness of the system. For example, when µ = 2 the stiffness ratio is

R =
1
2(2 + 0)
1
2(2− 0)

= 1,

whereas when µ = 1000

R =
1
2(1000 +

√
999996)

1
2(1000−

√
999996)

= 999.999
0.001 = 999999.
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4.6 Stiff solvers
Explicit methods are unsuitable for solving stiff systems due to the restriction placed on the value of the
step length due to stability. Implicit methods however have a much less restrictive stability region so can
be used to solve stiff systems.

For example, consider the solution to the van der Pol equations from Example 4.5.1 for µ = 100 (giving
R = 9999) over the domain t ∈ [0, 500] with initial values y0 = (2, 0). The MATLAB solvers ode45

(non-stiff) and ode15s (stiff) solvers have been used to compute the solution to this problem which is
plotted in Fig. 4.4. The behaviour of the solution shows extremely rapid change in the value of y which is
characteristic of a stiff system.

Figure 4.4: The solution to the van der Pol equations over the domain t ∈ [0, 500] and initial conditions
y0 = (2, 0).

The statistics for the two solvers were outputted to the command window and given below. The non-
stiff ode45 solver took 2.88 seconds to compute the solution whereas the stiff ode15s solver took just 0.22
seconds. The statistics from the ode45 solver shows that there were a large number of failed steps that
implies the step length was often too large to maintain the required accuracy.
ode45
---------------
27375 successful steps
1776 failed attempts
174907 function evaluations
Elapsed time is 2.880050 seconds .

ode15s
---------------
885 successful steps
306 failed attempts
2716 function evaluations
54 partial derivatives
394 LU decompositions
2553 solutions of linear systems
Elapsed time is 0.222540 seconds .

Dr Jon Shiach 49 Runge-Kutta Methods



Chapter 4. Stability & Order Stars Back to Table of Contents

4.7 Tutorial exercises
1. A pendulum can be described by the ODE

θ̈ + g

`
sin(θ) = 0,

where θ is the angular displacement from the vertical, g is the acceleration due to gravity and ` is
the length of the chord.

Given a pendulum of length ` = 1 and assuming g = 9.81ms−2

(a) Determine the equilibrium points for the system.

(b) For each equilibrium point, calculate the Jacobian matrix.

(c) Calculate the eigenvalues for this system.

(d) Determine the range of values of h for which the Euler method is stable for this problem.

2. Add another row to Table 4.1 by finding the Padé approximants expL/3(z) for L = 0, 1, 2.

3. Plot the order stars for your Padé approximants found in question 3 and state whether they represent
an A-stable method or not.

4. The Padé approximants in the lower diagonal of the Padé table (Table 4.1), i.e., L = M−1, represent
the stability functions of the Radau IIA methods (Hairer and Wanner, 1999). Plot the order star for
a 9th order Radau IIA method and thus determine whether it is A-stable or not.

The solutions to these exercises can be found on page 68.
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Chapter 5

Applications of ODEs: the N-body
problem

The motion of the planets and other celestial objects has fascinated astronomers and mathematicians for
millennia. In ancient times primitive societies believed that the presence of the stars in the night sky were
representations of the Gods or supernatural beings. The ancient astronomers observed that some objects in
the night sky travelled faster than others and were given the name astē planētēs in ancient Greek meaning
‘wandering star’. This is from where the modern English word ‘planets’ derives.

It was Nicolaus Copernicus who first proposed the heliocentric model in his book On the Revolutions of
the Heavenly Bodies that placed the Sun, and not the Earth, at the centre of the solar system. This was
met with much resistance by the Holy Roman Church since it directly contradicts statements in the Bible
and was treated as heresy.

The motion of two heavenly bodies that became known as the two-body problem was analysed by Johannes
Kepler in 1609 and was later solved by Isaac Newton in 1687 (Wolfram, 2002). The three-body problem
become a central topic in mathematical physics up until the early 1900s. It was Henri Poincaré who showed
that the three-body problem could not be solved using algebra and integrals and in the process discovered
the chaotic nature of the solutions that was an early foray into what would later become known as chaos
theory.

With the advent of the computer, approximations of the three-body, and therefore the N-body problem,
have been made possible using computational Ordinary Differential Equations (ODEs) solvers. This work
has been fundamental in the study of the universe.
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(a) Nicolaus Copernicus
(1473 – 1543)

(b) Johannes Kepler (1571
– 1630)

(c) Isaac Newton (1643 –
1727)

(d) Henri Poincaré (1854 –
1912)

Figure 5.1: The main protagonists of the study of the motions of celestial bodies and the N-body problem

5.1 Gravitation
The gravitational force F acting on an object i caused by another object j is related to the gravitational
constant G, the mass of the two objects mi and mj and the distance between the two bodies rij by the
inverse square law

F = G
mimj

r2
ij

. (5.1)

pi

pj

Fij

Fji

rij

Figure 5.2: Two bodies are attracted towards each other by the force of gravitation.

Consider Fig. 5.2, the gravitational force acting on body i will be acting in the direction of the vector
pointing towards body j, Fij . Let pij = pj − pi be the vector pointing from i to j and rij = ‖pij‖ then
Eq. (5.1) can be written in vector form as

Fij = G
mimj

r3
ij

pij . (5.2)

If there are more than two bodies in the system, the gravitational force acting on body i will be the sum
of Eq. (5.2) for all other bodies in the system, i.e.,

Fi =
N∑

j=1,j 6=i
G
mimj

r3
ij

pij . (5.3)

Newton’s second law of motion is

F = ma
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so we can rewrite Eq. (5.3) as

miai =
N∑

j=1,j 6=i
G
mimj

r3
ij

pij

ai =
N∑

j=1,j 6=i
G
mj

r3
ij

pij

Since acceleration is the second derivative of space with respect to time, the motion of a body is governed
by the second-order ODE

p̈i =
N∑

j=1,j 6=i
G
mj

r3
ij

pij . (5.4)

5.2 The two-body problem
The simplest N-body problem is two-body problem. Consider Fig. 5.3 where two bodies at positions p1
and p2 with mass m1 and m2 are travelling with velocities v1 and v2.

p1

p2

a1

a2

v1 v2

Figure 5.3: The two-body problem

Since there are only two bodies in this system the gravitational force acting on each body is only influenced
by the position and mass of the other body. Using Eq. (5.4) the motion of the two bodies is defined by
the system

p̈1 = G
m2
r3

12
p12,

p̈2 = −Gm1
r3

12
p12

Note that p21 = −p12 is used in the second equation to avoid repeating a similar calculation. Given that
velocity is the derivative of space with respect to time then v = ṗ and we can write this as a system of
four first-order ODEs

ṗ1 = v1,

ṗ2 = v2,

v̇1 = G
m2
r3

12
p12,

v̇2 = −Gm1
r3

12
p12.

If p ∈ R2 then p = (x, y) and if v = (u, v) then the full system of equations are

ẋ1 = u1,
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ẏ1 = v1,

ẋ2 = u2,

ẏ2 = v2,

u̇1 = G
m2
r3

12
(x2 − x1),

v̇1 = G
m2
r3

12
(y2 − y1),

u̇2 = −Gm1
r3

12
(x2 − x1),

v̇2 = −Gm1
r3

12
(y2 − y1).

So for two bodies in R2 we have a system of eight first-order ODEs.

5.2.1 Two-body problem solution

To demonstrate the solution to the two-body problem consider the example of two bodies of mass m1 =
m2 = 1 are located at positions p1 = (−1, 0) and p2 = (1, 0) with velocities v1 = (0, 1) and v2 = (0,−1).
The gravitational constant for this problem is G = 10. The two-body system can be written as an IVP in
the form ẏ = f(t,y) where

y =



x1
y1
x2
y2
u1
v1
u2
v2


, f(t,y) =



y5
y6
y7
y8

Gm2(y3 − y1)/r3
12

Gm2(y4 − y2)/r3
12

−Gm1(y3 − y1)/r3
12

−Gm1(y4 − y2)/r3
12


, y(0) =



−1
0
1
0
0
1
0
−1


.

The MATLAB program shown in listing 5.1 was written to solve the two-body problem defined here. The
program uses the ode113 solver to solve the system and no stability problems were encountered. A plot of
the solution at t = 5 is shown in Fig. 5.4.
% Clear workspaces
clear
clc

% Define parameters
G = 10; % Gravitational constant
fps = 30; % Frames per second in animation

% Define body positions , velocities and mass
p1 = [ -1 , 0 ];
p2 = [ 1 , 0 ];
v1 = [ 0 , 1 ];
v2 = [ 0 , -1 ];
mass = [ 1, 1 ];

% Define IVP parameters
tspan = linspace (0, 2, 2*30);
y0 = [ p1 , p2 , v1 , v2 ];

% Solve ODE
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[t, y] = ode113 (@(t, y) two_body_ode (t, y, G, mass), tspan , y0);

% Plot solution
for i = 1 : length (t)

clf
hold on
plot(y(i, 1), y(i, 2), "bo", " markerfacecolor ", "b") % bodies
plot(y(i, 3), y(i, 4), "ro", " markerfacecolor ", "r")
plot(y(1:i, 1), y(1:i, 2), "b-", " linewidth ", 2) % trajectories
plot(y(1:i, 3), y(1:i, 4), "r-", " linewidth ", 2)
hold off

axis ([ -1.5 , 1.5, -1, 1])
box on
title( sprintf (" $t$ = %1.2f", t(i)), " fontsize ", 16, " interpreter ", "latex ")
xlabel (" $x$", " fontsize ", 16, " interpreter ", "latex ")
ylabel (" $y$", " fontsize ", 16, " interpreter ", "latex ")
shg
pause (1 / fps)

end

% -------------------------------------------------------------------------
function dy = two_body_ode (~, y, G, m)

% This function defines the ODE function for the two body problem in 2D.

% Calculate differences in co - ordinates and distance between bodies
x12 = y(3) - y(1);
y12 = y(4) - y(2);
r12 = 1 / sqrt(x12 ^2 + y12 ^2) ^3;

% Calculate dy vector
dy = zeros(size(y));
dy (1:4) = y(5: end);
dy (5) = G * m(2) * x12 * r12;
dy (6) = G * m(2) * y12 * r12;
dy (7) = - G * m(1) * x12 * r12;
dy (8) = - G * m(1) * y12 * r12;

end

Listing 5.1: MATLAB program to define and solve the two-body problem.
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Figure 5.4: Plot of the solution to the two-body problem.

The evolution of the solution shows that initially the two bodies are travelling in opposite vertical directions.
The gravitational pull of the other body affects the trajectory and the two bodies begin to travel towards
each other.

5.3 The three-body problem
The introduction of a third body into the system requires that the gravitational forces acting on a single
body from the other two bodies are combined to calculate the acceleration. Consider the diagram in Fig. 5.5
where three bodies are at positions p1, p2 and p3 are travelling with velocities v1, v2 and v3. The forces
acting on body 1, F12 and F13, are calculated using the respective masses and distances of bodies 2 and
3 and summed to give a1.

p1

p2

p3

F12

F13 a1

v1 F21

F23

a2

v2

F31
F32

a2

v2

Figure 5.5: The three-body problem

Using Eq. (5.4) for the three body system we have

ṗ1 = v1,

ṗ2 = v2,

Dr Jon Shiach 56 Runge-Kutta Methods



Back to Table of Contents Chapter 5. Applications of ODEs: the N-body problem

ṗ3 = v3,

v̇1 = G
m2
r3

12
p12 +G

m3
r3

13
p13,

v̇2 = −Gm1
r3

12
p12 +G

m3
r3

23
p23,

v̇3 = −Gm1
r3

13
p13 −G

m3
r3

23
p23,

where rij = ‖pij‖. If p ∈ R2 we now have the system of 12 ODEs

ẋ1 = u1,

ẏ1 = v1,

ẋ2 = u2,

ẏ2 = v2,

ẋ3 = u3,

ẏ3 = v3,

u̇1 = G
m2
r3

12
(x2 − x1) +G

m3
r3

13
(x3 − x1),

v̇1 = G
m2
r3

12
(y2 − y1) +G

m3
r3

13
(y3 − y1),

u̇2 = −Gm1
r3

12
(x2 − x1) +G

m3
r3

23
(x3 − x2),

v̇2 = −Gm1
r3

12
(y2 − y1) +G

m3
r3

23
(y3 − y2),

u̇3 = −Gm1
r3

13
(x3 − x1)−Gm2

r3
23

(x3 − x2),

v̇3 = −Gm1
r3

13
(y3 − y1)−Gm2

r3
23

(y3 − y2),

5.3.1 The three-body solution

To demonstrate the solution of the three body problem consider a system with three points of mass
m1 = m2 = m3 = 1 positioned at the three vertices of an equilateral triangle centred at the origin
with side length 1 such that p1(0) = (0,

√
3/3), p2(0) = (−1/2,−

√
3/6) and p3(0) = (1/2,−

√
3/6)

(Fig. 5.6). The velocities of the three bodies are zero with the exception on v1(0) which is a given a small
positive velocity in the x direction and the gravitational constant was set as G = 1. Plots of the solution
trajectories for slightly varying values of v1 can be seen in Fig. 5.7 which shows that small changes in the
initial conditions results in vastly different solutions, an observation first made by Poincaré.

x

y

p1

p2 p3

Figure 5.6: Initial positions for the three-body problem.
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(a) v3 = (0.1, 0, 0) (b) v3 = (0.2, 0, 0)

(c) v3 = (0.3, 0, 0) (d) v3 = (0.4, 0, 0)

(e) v3 = (0.5, 0, 0) (f) v3 = (0.6, 0, 0)

Figure 5.7: Solution trajectories for the three body problem with slightly different velocities for v3.
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function dy = N_body_ode (~, y, G, m)

% Defines the ODE function for the N body problem in 3 dimensions

% Calculate number of bodies in the system
N = length (y) / 6;

% Define first half of dy vector
dy = zeros(size(y));
dy(1 : 3 * N) = y(3 * N + 1 : end);

% Loop through the bodies
for i = 1 : N - 1

for j = i + 1 : N

% Calculate distance between body i and body j
xij = y(3 * j - 2) - y(3 * i - 2);
yij = y(3 * j - 1) - y(3 * i - 1);
zij = y(3 * j) - y(3 * i);
r = 1 / sqrt(xij ^2 + yij ^2 + zij) ^ 3;

% Calculate sum of forces for body i and j
dy(3 * N + 3 * i - 2) = dy(3 * N + 3 * i - 2) + G * m(j) * xij * r;
dy(3 * N + 3 * i - 1) = dy(3 * N + 3 * i - 1) + G * m(j) * yij * r;
dy(3 * N + 3 * i) = dy(3 * N + 3 * i) + G * m(j) * zij * r;
dy(3 * N + 3 * j - 2) = dy(3 * N + 3 * j - 2) - G * m(i) * xij * r;
dy(3 * N + 3 * j - 1) = dy(3 * N + 3 * j - 1) - G * m(i) * yij * r;
dy(3 * N + 3 * j) = dy(3 * N + 3 * j) - G * m(i) * zij * r;

end
end

end

Listing 5.2: MATLAB function that defines the ODE function for the N-body problem in R3.

5.4 The N-body problem formulation
The formulation for N bodies follows naturally from the three-body problem. Using Eq. (5.4) for N bodies
and p ∈ R3 where p = (x, y, z) and v = (u, v, w) we will have a system of 6N equations, i.e.,

ẋi = ui,

ẏi = vi,

żi = wi,

u̇i =
∑

j=1,j 6=i
G
mj

r3
ij

(xj − xi),

v̇i =
∑

j=1,j 6=i
G
mj

r3
ij

(yj − yi),

ẇi =
∑

j=1,j 6=i
G
mj

r3
ij

(zj − zi).

where i = 1, . . . , N . The MATLAB function given in listing 5.2 defines the ODE function for N bodies in
R3. Note that this function uses the fact that pij = −pji to reduce the number of calculations.
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5.5 Modelling the solar system

The most common application of the N-body problem is the modelling of the motions of bodies in a solar
system. This allows us to calculate the trajectories of the planets and was necessary for NASA’s Apollo
missions to the moon and exploration of Mars and the ESA’s Rosetta mission to Comet 67P/Churyumov-
Gerasimenko.

Ephemeris giving best estimates of the positions, velocities and physical parameters for solar system bodies
is available from NASA’s JPL Horizons system (Giorgini, 2016) and have been included in Appendix B
(correct for 00:00 on the 1st January 2017). The value of the gravitational constant is approximately
G = 6.67404× 10−11m3kg−1s−2.

5.5.1 Sun, Earth and Moon

The data for the Sun, Earth and Moon was used with the code for the three-body problem to model
the motion of these bodies. A plot of the solution after one orbit of the Earth (i.e., 1 year) is shown in
Fig. 5.8. The position of the Moon has been artificially moved further away from the Earth so that it can
be distinguished from the Earth in the solution plot. It can be clearly seen that the very large mass of the
Sun relative to the masses of the Earth and Moon means that Sun’s position remains virtually stationary.
The Moon orbits the Earth since the force exerted by the gravitational pull of the Earth is much larger
than that of the Sun due to the inverse square law.

Figure 5.8: The solution of the three-body problem for modelling the orbit of the Earth and Moon around
the sun.

5.5.2 Sun, the eight planets and Pluto

The motion of the Sun, the eight planets of the solar system and Pluto were modelled using an 10-body
formulation and can be seen in Fig. 5.9. Due to the distances involved it is difficult to see the trajectories
of the closest four planets of the solar system so they have been omitted from this plot. The plot shows the
solution after 250 years (at the start of the year 2267). The plot in Fig. 5.10 is the same plot as Fig. 5.9
but aligned to show that the plane of Pluto’s orbit is different from that of the planets of the solar system.
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Figure 5.9: The solution of the 10-body problem for modelling the orbits of the planets of the solar system
(and Pluto).

Figure 5.10: A plot of the the orbits of the planets and Pluto aligned to show the plane of Pluto’s orbit.
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5.6 Tutorial Exercises
1. Solve the two-body problem using the ode45 solver for initial positions p1 = (0, 0), p2 = (1, 0), the

velocity of body 1 v1(0) = (0, 0), the mass of body 2 m2 = 1, G = 1 and the following values for
velocity of body 2 and mass of body 1.

(a) v2(0) = (−5,−5), m1 = 100;

(b) v2(0) = (0,−1), m1 = 10.

Produce a plot showing the trajectories of the two bodies after t = 5s has elapsed.

2. Use the MATLAB function N_body_ode.m found on page 59 (also available on the Moodle area for
this unit) to define the three-body problems shown in Section 5.3.1 and reproduce the plots shown
in Fig. 5.7. Use the ode23s solver to solve the ODE.

3. Solve the three body problem with G = 1, m1 = m2 = m3 = 1 and the following initial positions
and velocities: p1 = (−0.3668, 0.0074), p2 = (0.4888, 0.0064), p3 = (−0.1193,−0.0135), v1 =
(0.1229, 0.7474), v2 = (−0.0193, 1.3692), v3 = (−0.1036,−2.1167).

4. Download the file solar.mat from the Moodle area for this unit that contains the ephemeris given
in Appendix B. Load the data using the command ‘load solar’ and use the ode113 solver to model
the orbits of the first five planets in the solar system (Mercury to Mars) around the Sun for the five
year period following 00:00 01/01/2017. Note that the ephemeris gives the positions of the bodies
in Astronomical Units (1AU = 149597870700m), velocities in AU/day, mass in kg and the value of
the gravitational constant is approximately G = 6.67404× 10−11m3kg−1s−2.

5. Extend your model from question 4 to model the orbits of all of the planets in the solar system (plus
Pluto) for the period 00:00 01/01/2017 to 00:00 01/01/2117. Produce a plot of the motion of the
Sun over this period. How can this information be used to detect other solar systems?

The solutions to these exercises can be found on page 76.
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Appendix A

Solutions to tutorial exercises

A.1 Deriving Runge-Kutta Methods
The solutions to the tutorial exercises on page 11.

1. t = [ τ [τ] [τ3] ], r(t) = 8, σ(t) = 6, γ(t) = 64

2. r(t) = 10, σ(t) = 4, γ(t) = 480

3. (a)

t = ,

r(t) = 7,
Φ(t) =

∑
biaijajkcicjc

2
k,

γ(t) = 7,
F (t) = f ′′(f , f ′′(f ′′(f , f)), f).

(b)

t = ,

r(t) = 11,
Φ(t) =

∑
biaijaikai`akmc

2
jc`c

3
m,

γ(t) = 1320,
F (t) = f ′′′(f ′′(f , f), f ′f ′′′(f , f , f), f ′f).

5. The order conditions for a third-order Runge-Kutta method are

b1 + b2 + b3 = 1,

b2c2 + b3c3 = 1
2 ,
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b2c
2
2 + b3c

2
3 = 1

3 ,

b3a32c2 = 1
6 .

6.

Tree

t [τ4] [τ2 [τ] ] [τ [τ2] ] [τ [[τ]] ]
γ(t) 5 10 15 30
Φ(t)

∑
bic

4
i

∑
biaijc

2
i cj

∑
biaijcic

2
j

∑
biaijajkcick

Tree

t [ [τ3] ] [ [ τ [τ] ] ] [[[τ2]]] [[[[τ]]]]
γ(t) 20 40 60 120
Φ(t)

∑
biaijc

3
j

∑
biaijajkcjck

∑
biaijajkc

2
k

∑
biaijajkak`c`
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A.2 Adaptive Step Size Control

Solutions to the tutorial exercises on page 24.

1. (a) y(0.05) = 0.030113

(b) hnew = 0.044043. Since est = 1.137712 × 10−4 which is larger than tol = 10−4 the step is
repeated using hnew.

(c) There were 11 successful steps, 1 failed steps and 72 function evaluation used in total.

Figure A.1: Solution to the IVP using Fehlberg’s Runge-Kutta method with adaptive step size control.

2. (a)

Figure A.2: Solution to the Lotka-Volterra equations using the RK4 method.
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(b) The details of each of the methods used to solve the Lotka-Volterra equations are shown in
Table A.1. Note that your CPU times will be different from the ones shown below.

Table A.1: Solver details for the methods used to solve the Lotka-Volterra equations.

Method CPU time
(s)

successful
steps

failed steps function
evaluations

RK4 0.0498 - - 800
RK4 with step doubling 0.0083 65 9 814
ODE45 0.0066 62 2 385

(c) The ode45 solver uses the Dormand-Prince embedded Runge-Kutta method.

A.3 Stability & Order Stars
Solutions to the tutorial exercises on page 50.

1. (a) Equilibrium points at (nπ, 0) where n ∈ Z.

(b) J =
(

0 1
−g cos(θ1) 0

)
therefore

J(0,0) =
(

0 1
−g 0

)
,

J(nπ,0) =
(

0 1
g 0

)
, n = 1, 3, . . .

J(nπ,0) = J(0,0), n = 2, 4, . . .

(c) For the equilibrium point at (nπ, 0) where n is even, λ1 = i
√
g and λ2 = −i√g.

For the equilibrium point at (nπ, 0) where n is odd, λ1 = √g and λ2 = −√g.

(d) For this problem the Euler method is stable for step lengths in the interval h ∈ [0, 1/√g] ≈
[0, 0.319]

2. The equilibrium points are at (0, 0) and (γ/δ, α/β). The Jacobian is

J =
(
α− βy −βx
δy δx− γ

)
For the equilibrium point at (0, 0), λ1 = α and λ2 = −γ.

For the equilibrium point at (γδ ,
α
β ), λ1 = i

√
αγ and λ2 = −i√αγ.

3.

exp0/3(z) = 1
1− z + 1

2z
2 − 1

6z
3 ,

exp1/3(z) =
1 + 1

4z

1− 3
4z + 1

4z
2 − 1

24z
3 ,

exp2/3(z) =
1 + 2

5z + 1
20z

2

1− 3
5z + 3

20z
2 − 1

60z
3 .
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4. The order stars for exp0/3(x), exp1/3(x) and exp2/3(x) are plotted in Fig. A.3. The Padé approximant
exp0/3(x) is not an A function but exp1/3(x) and exp2/3(x) are A functions.

(a) exp0/3(z) (b) exp1/3(z)

(c) exp2/3(z)

Figure A.3: Order stars for expL/3(x) where L = 0, 1, 2.

5. For a 9th order Radua IIA method the stability function is

exp4/5(z) =
1 + 4

9z + 1
12z

2 + 1
126z

3 + 1
3024z

4

1− 5
9z + 5

36z
2 − 5

252z
3 + 5

3024z
4 − 1

15120z
5

The order star for exp4/5(z) is plotted in Fig. A.4. This shows that the 9th order Radua IIA method
is an A stable method.
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Figure A.4: Order star for exp4/5(z) that represents the stability function for the 9th-order Radau IIA
method.
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A.4 Implicit Runge-Kutta Methods
Solutions to the tutorial exercises on page 37.

1. (a) The stage values for the RadauIA method are calculated by solving(
1− htn tn + 2h/3
−tn 1− 5(tn + 2h/3)/3

)(
Y1
Y2

)
=
(
yn
yn

)
,

For the first step, t0 = 0, y0 = 1 and h = 0.1 so Y1 = 0.9933 and Y2 = 1.0112. The solution
for the first step is

y1 = y0 + h

(1
4Y1 + 3

4Y2

)
= 1 + 0.1

(1
4(0.9933) + 3

4(1.0112)
)

= 1.1007.

(b) The MATLAB code used to compute the solution is given below
% irk_q1 .m by Jon Shiach
%
% This program calculates the solution to the IVP
%
% y’ = 4ty , 0 <= t <= 1, y(0) = 1
%
% using the third -order RadauIA method with step length h = 0.1.

% Clear workspaces
clear
clc

% Define solution parameters
tspan = [ 0, 1 ];
y0 = 1;
h = 0.1;
nsteps = (tspan (2) - tspan (1)) / h;

% Setup solutions arrays
y = y0;
t = tspan (1);
yout = zeros( nsteps +1, 1);
tout = zeros( nsteps +1, 1);
yout (1) = y;
tout (1) = t;

% Step through domain
for n = 1 : nsteps

% Solve for the stage values
A = [ 1 - h*t, h*(t + 2*h/3) ; -h*t, 1 - 5* h*(t + 2*h/3) /3 ];
rhs = [ y ; y ];
Y = A \ rhs;

% Update solution
y = y + h *(1/4* Y(1) + 3/4*Y(2));
t = t + h;
yout(n+1) = y;
tout(n+1) = t;

end

% Plot solution
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plot(tout , yout)
xlabel (’$t$ ’, ’fontsize ’, 16, ’interpreter ’, ’latex ’)
ylabel (’$y$ ’, ’fontsize ’, 16, ’interpreter ’, ’latex ’)

The solution to this IVP is plotted below.

2. (a) Let y1 = θ and y2 = y′1 then

y′1 = y2,

y′2 = −g
`

sin(y1).

(b) We can differentiate this system

fy(t, y) =
(

0 1
−g cos(y1)/` 0

)

and since h = 0.1, ` = 1, g = 9.81 and y1 = 1 then the Jacobian for the fourth-order
Gauss-Legendre method is (using Eq. (3.16))

J(Y ) = I4 − h(A⊗ I2)(I2 ⊗ fy) =


1.0000 −0.0250 0 0.0039
0.1325 1.0000 −0.0205 0

0 −0.0539 1.0000 −0.0250
0.2855 0 0.1325 1.0000

 .
Performing Newton’s iterations

G(Y (0)) =


0

0.1744
0

0.6510

 , ∆Y =


−0.0019
−0.1747
−0.0256
−0.6471

 , Y 1 =


0.9981
−0.1747
0.9744
−0.6471

 , ‖∆Y ‖ = 0.6708,

G(Y 1) =


0
0
0

0.0001

 , ∆Y =


0
0
0

0.0001

 , Y 2 =


0.9981
−0.1747
0.9744
−0.6470

 , ‖∆Y ‖ = 0.0001.

Dr Jon Shiach 72 Runge-Kutta Methods



Back to Table of Contents Appendix A. Solutions to tutorial exercises

The solution for the first step is

y1 = y0 + h(bT ⊗ I2)F (t0, Y ))

=
(

1
0

)
+ 0.1

(
1/2 0 1/2 0
0 1/2 0 1/2

)
0.9981
−0.1747
0.9744
−0.6470

 =
(

0.9589
−0.8181

)
.

(c) The MATLAB code used to compute the solution is given below
% irk_q2 .m by Jon Shiach 2018
%
% This program solves the van der Pol equation using an IRK method

% Clear workspaces
clear
clc

% Define solution parameters
global N s g l
tspan = [ 0, 20 ]; % domain
y0 = [1 ; 0]; % initial values of y
N = 2; % no. equations in the system
h = 0.1; % step length
nsteps = (tspan (2) - tspan (1)) / h;
tol = 1d -4;
g = 9.81; % acceleration due to gravity
l = 1; % length of the chord

% Define fourth -order Guass - Legendre method
A = [1/4 , 1/4- sqrt (3) /6 ;
1/4+ sqrt (3) /6, 1/4 ];
b = [ 1/2 ; 1/2 ];
c = [1/2 - sqrt (3) /6 ; 1/2 + sqrt (3) /6];
s = 2;

% Initialise solution arrays
y = y0;
t = tspan (1);
yout = zeros( nsteps +1, N);
tout = zeros( nsteps +1, 1);
yout (1, :) = y’;
tout (1) = t;
e = ones(s, 1);

% Step through the domain
for n = 1 : nsteps + 1

% Initialise Y and calculate Jacobian matrix
Y = kron(e, y);
J = eye(N*s) - h*kron(A, eye(N))*kron(eye(s), Jac(t, y));

% Perform Newton iterations to solve for Y
err = 1;
while err > tol

G = Y - kron(e, y) - h*kron(A, eye(N))*F(t, Y);
Delta_Y = J \ -G;
Y = Y + Delta_Y ;
err = norm( Delta_Y );
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end

% Update solution
y = y + h*kron(b’, eye(N))*F(t, Y);
t = t + h;
yout(n+1, :) = y’;
tout(n+1) = t;
end

% plot solution
plot(tout , yout (:, 1))
axis ([ tspan , -1.5, 1.5])

% ===============================================================
function dy = f(~, y)

% This function defines the ODE system
global g l
dy = [ y(2) ;
-g/l*sin(y(1)) ];
end

% ===============================================================
function J = Jac (~, y)

% This function calculates the Jacobian matrix for the ODE system
global g l
J = [ 0 1 ; -g/l*cos(y(1)), 0 ];

end

% ===============================================================
function Fout = F(t, Y)

% This function defines the vector F
global N s
Fout = zeros(N*s, 1);
j = 1;
for i = 1 : s

Fout(j : j + N - 1) = f(t, Y(j : j + N - 1));
j = j + N;

end

end

3. The MATLAB commands used to compute the solution using ode23s are given below.
options = odeset (’Stats ’, ’on’);
[t, y] = ode23s (@f , tspan , y0 , options );

The solver statistics are
326 successful steps
50 failed attempts
1732 function evaluations
326 partial derivatives
376 LU decompositions
1128 solutions of linear systems
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The solutions computed using the Gauss-Legendre IRK method and ode23s are plotted below.
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A.5 Applications of ODEs – the N body problem

Solutions to the tutorial exercises on page 62.

1.

Figure A.5: Solution to a 2-body problem with initial conditions p1 = (0, 0), p2(0) = (1, 0), v1 = (0, 0),
v2 = (−5,−5), m1 = 1, m2 = 100 and G = 1.

Figure A.6: Solution to a 2-body problem with initial conditions p1 = (0, 0), p2(0) = (1, 0), v1 = (0, 0),
v2 = (0,−1), m1 = 1, m2 = 10 and G = 1.

3. The three bodies move in a periodic figure 8 orbit.
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Figure A.7: Solution to a 3-body problem that exhibits periodic figure 8 orbit.

4.

Figure A.8: The orbits of the four closest planets to the Sun.

5. Despite its mass relative to the other bodies in the solar system, the Sun’s position does change
due to the gravitational force exerted by the planets. If another star moves in a similar way then it
suggests that it is at the centre of a solar system.
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Figure A.9: The motion of the Sun’s position in space due to the gravitational force exerted by the planets
of the solar system.
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Appendix B

Ephemeris for solar system bodies

The data in these tables was obtained from the NASA’s Jet Propulsion Laboratory (JPL) Horizons system
(Giorgini, 2016) http://ssd.jpl.nasa.gov/horizons.cgi.

Table B.1: Co-ordinates for the bodies in the solar system at 00:00 1st January 2017 (units are AU).

Body x y z

Sun 0.0000000000E + 00 0.0000000000E + 00 0.0000000000E + 00
Mercury −1.4337194579E − 01 2.8370937153E − 01 3.6335706120E − 02
Venus 4.6732439979E − 01 5.5082312871E − 01 −1.9414673058E − 02
Earth −1.7961365192E − 01 9.6679492050E − 01 −3.6687303846E − 05
Mars 1.3547028701E + 00 3.8687490303E − 01 −2.5140097262E − 02
Jupiter −5.3597336247E + 00 −1.0126710502E + 00 1.2413595220E − 01
Saturn −1.8684958796E + 00 −9.8697045476E + 00 2.4592349924E − 01
Uranus 1.8339238172E + 01 7.8262157953E + 00 −2.0839483086E − 01
Neptune 2.8336082160E + 01 −9.6934185530E + 00 −4.5341880267E − 01
Pluto 9.6600843904E + 00 −3.1802586396E + 01 6.0755835269E − 01
Moon −1.7787813595E − 01 9.6484001964E − 01 5.3542927250E − 05

Table B.2: Velocities for the bodies in the solar system at 00:00 1st January 2017 (units are AU/day).

Body u v w

Sun 0.0000000000E + 00 0.0000000000E + 00 0.0000000000E + 00
Mercury −3.0768488424E − 02 −1.1623533642E − 02 1.8729708227E − 03
Venus −1.5485267593E − 02 1.2998526018E − 02 1.0718324616E − 03
Earth −1.7200383605E − 02 −3.2111862156E − 03 7.9277707382E − 07
Mars −3.3070296717E − 03 1.4653201202E − 02 3.8822858604E − 04
Jupiter 1.3117028869E − 03 −7.0652781505E − 03 −1.6241637397E − 09
Saturn 5.1777132886E − 03 −1.0608588095E − 03 −1.8754455925E − 04
Uranus −1.5704503553E − 03 3.4272524407E − 03 3.2938367343E − 05
Neptune 9.9776070300E − 04 2.9824553077E − 03 −8.4702821626E − 05
Pluto 3.0712757363E − 03 2.4670547535E − 04 −9.2747754344E − 04
Moon −1.6780783692E − 02 −2.8109343090E − 03 −4.7697885503E − 05
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Table B.3: Mass of the major bodies in the solar system (units are kg).

Body Mass Body Mass Body Mass

Sun 1.988544E + 30 Mercury 3.302000E + 23 Venus 4.868500E + 24
Earth 5.972190E + 24 Mars 6.418500E + 23 Jupiter 1.898130E + 27
Saturn 5.683190E + 26 Uranus 8.681030E + 25 Neptune 1.024100E + 26
Pluto 1.307000E + 22 Moon 7.349000E + 22
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